Fachprüfungs- und Studienordnung für den Masterstudiengang Physik (Biophysik) an der Technischen Universität München

Vom 20. Februar 2018

Auf Grund von Art. 13 Abs. 1 Satz 2 in Verbindung mit Art. 58 Abs. 1 Satz 1, Art. 61 Abs. 2 Satz 1 sowie Art. 43 Abs. 5 des Bayerischen Hochschulgesetzes (BayHSchG) erlässt die Technische Universität München folgende Satzung:

Inhaltsverzeichnis:

§ 34	Geltungsbereich, akademischer Grad, verwandte Studiengänge
§ 35	Studienbeginn, Regelstudienzeit, ECTS
§ 36	Qualifikationsvoraussetzungen
§ 37	Modularisierung, Modulprüfung, Lehrveranstaltungen, Studienrichtungen, Unterrichtssprache
§ 38	Prüfungsfristen, Studienfortschrittskontrolle, Fristversäumnis
§ 39	Prüfungsausschuss
§ 40	Anrechnung von Studienzeiten, Studien- und Prüfungsleistungen
§ 41	Studienbegleitendes Prüfungsverfahren
§ 42	Anmeldung und Zulassung zur Masterprüfung
§ 43	Umfang der Masterprüfung
§ 44	Wiederholung, Nichtbestehen von Prüfungen
§ 45	Studienleistungen
§ 45 a	Multiple-Choice-Verfahren
§ 46	Master's Thesis
§ 46 a	Masterkolloquium
S 47	Bestehen und Bewertung der Masterprüfung

Anlage A: Prüfungsmodule Anlage B: Eignungsverfahren Anlage C: Studienplan

In-Kraft-Treten

Zeugnis, Urkunde, Diploma Supplement

§ 48

§ 49

§ 34 Geltungsbereich, akademischer Grad, verwandte Studiengänge

- (1) ¹Die Fachprüfungs- und Studienordnung (FPSO) für den Masterstudiengang Physik (Biophysik) (BIO) ergänzt die Allgemeine Prüfungs- und Studienordnung für Bachelor- und Masterstudiengänge an der Technischen Universität München (APSO) vom 18. März 2011 in der jeweils geltenden Fassung. ²Die APSO hat Vorrang.
- (2) ¹Aufgrund der bestandenen Masterprüfung wird der akademische Grad "Master of Science" ("M.Sc.") verliehen. ²Dieser akademische Grad kann mit dem Hochschulzusatz "(TUM)" geführt werden.
- (3) ¹An der Technischen Universität München sind folgende Masterstudiengänge verwandte Studiengänge:

Physik (Kern-, Teilchen- und Astrophysik), Physik (Physik der Kondensierten Materie) und Physics (Applied and Engineering Physics).

²Beim Wechsel von einem Masterstudiengang einer anderen Universität an die Technische Universität München entscheidet der zuständige Prüfungsausschuss über die Verwandtheit des Studienganges aufgrund der Prüfungs-/Studienordnung der betreffenden Hochschule.

§ 35 Studienbeginn, Regelstudienzeit, ECTS

- (1) ¹Eine Aufnahme des Masterstudiengangs Physik (Biophysik) an der Technischen Universität München ist sowohl im Wintersemester als auch im Sommersemester möglich. ²Empfohlener Studienbeginn ist im Wintersemester.
- (2) ¹Der Umfang der für die Erlangung des Mastergrades erforderlichen Credits im Pflicht-, Wahlbereich beträgt 85 (ca. 62 Semesterwochenstunden). ²Hinzu kommen 30 Credits (sechs Monate) für die Durchführung der Master's Thesis und 5 Credits für das Masterkolloquium. ³Der Umfang der zu erbringenden Studien- und Prüfungsleistungen im Pflicht- und Wahlbereich gemäß Anlage A im Masterstudiengang Physik (Biophysik) beträgt damit mindestens 120 Credits. ⁴Die Regelstudienzeit für das Masterstudium beträgt insgesamt vier Semester.

§ 36 Qualifikationsvoraussetzungen

- (1) Die Qualifikation für den Masterstudiengang Physik (Biophysik) wird nachgewiesen durch
 - 1. einen an einer in- oder ausländischen Hochschule erworbenen mindestens sechssemestrigen qualifizierten Bachelorabschluss oder einen mindestens gleichwertigen Abschluss im Studiengang Physik oder vergleichbaren Studiengängen,
 - 2. das Bestehen des Eignungsverfahrens gemäß Anlage B.
- (2) Ein im Sinne von Abs. 1 qualifizierter Hochschulabschluss liegt vor, wenn keine wesentlichen Unterschiede hinsichtlich der in dem wissenschaftlich orientierten einschlägigen, in Abs. 1 Nr. 1 genannten Bachelorstudiengang Physik der TUM erworbenen Kompetenzen (Lernergebnisse) bestehen und diese den fachlichen Anforderungen des Masterstudiengangs entsprechen.

- (3) ¹Zur Feststellung nach Abs. 2 werden die Pflichtmodule des Bachelorstudiengangs Physik der Technischen Universität München herangezogen. ²Fehlen zu dieser Feststellung Prüfungsleistungen im Umfang von nicht mehr als 30 Credits, so kann die Kommission zum Eignungsverfahren nach Anlage B Nr. 3 fordern, dass zum Nachweis der Qualifikation nach Abs. 1 diese Prüfungen als zusätzliche Grundlagenprüfungen gemäß Anlage B Nr. 5.1.2 bzw. 5.2.5 abzulegen sind. ³Der Studienbewerber oder die Studienbewerberin ist hierüber nach Sichtung der Unterlagen im Rahmen der ersten Stufe des Eignungsverfahrens zu informieren.
- (4) Über die Vergleichbarkeit des Studiengangs, über die Feststellung der speziellen Eignung sowie über die Anrechnung von Kompetenzen bei der Prüfung der an ausländischen Hochschulen erworbenen Hochschulabschlüsse entscheidet die Kommission zum Eignungsverfahren unter der Beachtung des Art. 63 Bayerisches Hochschulgesetz.
- (5) ¹Abweichend von Abs. 1 Nr. 1 können Studierende, die in einem in Abs. 1 Nr. 1 genannten Bachelorstudiengang immatrikuliert sind, auf begründeten Antrag zum Masterstudium zugelassen werden. ²Der Antrag darf nur gestellt werden, wenn bei einem sechssemestrigen Bachelorstudiengang Modulprüfungen im Umfang von mindestens 130 Credits, bei einem siebensemestrigen Bachelorstudiengang Modulprüfungen im Umfang von mindestens 160 Credits und bei einem achtsemestrigen Bachelorstudiengang Modulprüfungen im Umfang von mindestens 190 Credits zum Zeitpunkt der Antragstellung nachgewiesen werden. ³Der Nachweis über den bestandenen Bachelorabschluss ist innerhalb eines Jahres nach Aufnahme des Masterstudiums zu erbringen.

§ 37 Modularisierung, Modulprüfung, Lehrveranstaltungen, Studienrichtungen, Unterrichtssprache

- (1) ¹Generelle Regelungen zu Modulen und Lehrveranstaltungen sind in den §§ 6 und 8 APSO getroffen. ²Bei Abweichungen zu Modulfestlegungen gilt § 12 Abs. 8 APSO.
- (2) Der Studienplan mit den Modulen ist in der Anlage C aufgeführt.
- (3) ¹Der Masterstudiengang Physik (Biophysik) gliedert sich in eine Vertiefungs- und eine Forschungsphase von je zwei Semestern Dauer. ²Ein wesentliches Element der Vertiefungsphase ist der Katalog der Spezialfachmodule im Umfang von jeweils 5 Credits. ³Die Module des Katalogs entsprechen ausgewählten Kapiteln der experimentellen und theoretischen Physik und sind gegliedert in die vier Schwerpunkte
 - Kern-, Teilchen und Astrophysik,
 - Kondensierte Materie,
 - Biophysik und
 - Applied and Engineering Physics.

⁴Sie spiegeln das wissenschaftliche Profil der Fakultät für Physik wider und führen inhaltlich bis an die aktuelle Forschung heran. ⁵Der Katalog wird jeweils für ein Studienjahr zu Beginn des Wintersemesters (spätestens vier Wochen vor Vorlesungsbeginn) durch den Prüfungsausschuss im Internet den Studierenden bekanntgegeben. ⁶Vier dieser Wahlmodule (20 Credits) wählen die Studierenden aus ihrem Schwerpunkt Biophysik, zwei weitere Wahlmodule (10 Credits) sollen aus dem komplementären Angebot absolviert werden. ⁷Aus dem spezifischen Katalog der Theoretischen Physik zum Themengebiet Biophysik ist ein weiteres Wahlmodul (10 Credits) zu belegen. ⁸Damit ist neben der fachlichen Vertiefung die Breite der Ausbildung gewährleistet. ⁹Das Modul "Fortgeschrittene fachspezifische Schlüsselqualifikation" (10 Credits), das insbesondere die Lehrveranstaltungen "Fortgeschrittenenpraktikum" und "Proseminar" enthält, wird als Studienleistung erbracht, wobei das Proseminar und zumindest vier von sechs Versuchen des Praktikums thematisch dem Schwerpunkt zugeordnet sind. ¹⁰Im "Nichtphysikalischen Wahlmodul" werden Verbindungen zu den Nachbarwissenschaften oder den Anwendungen der Physik in den Ingenieurwissenschaften oder der Medizin hergestellt. ¹¹Aus einem vom

Prüfungsausschuss herausgegebenen Katalog sind Prüfungen im Umfang von 8 Credits zu absolvieren. 12 Drei weitere Credits sind als Studienleistung aus der Fächergruppe "Allgemeinbildende Fächer" zu erbringen. ¹³Das letzte Jahr des Masterstudiums, die Forschungsphase, bildet eine für das Physikstudium charakteristische Einheit, in der die für die Physiker und Physikerinnen spezifische Berufsqualifikation erworben wird. ¹⁴Dazu muss eine aktuelle Fragestellung auf einem Gebiet der modernen Physik selbständig bearbeitet werden. ¹⁵Zunächst erarbeitet man sich im dritten Semester im Rahmen des Master-Seminars (10 Credits) die notwendigen Fachkenntnisse auf dem aktuellen Niveau der internationalen Forschung. ¹⁶Das Master-Praktikum (14 Credits) dient dem Erwerb spezieller experimenteller theoretischer Fertigkeiten sowie der Konzipierung und Schaffung Voraussetzungen für die Durchführung des Forschungsprojekts und dessen Bearbeitung im Rahmen der Master's Thesis (30 Credits), die in den letzten Wochen des dritten Semesters startet und einen Großteil des vierten Semesters ausfüllt. ¹⁷In einem abschließenden Master-Kolloquium (5 Credits) wird die Master's Thesis verteidigt. 18Zur Orientierung im breiten Wahlangebot des Masterstudiums sind die Studierenden zur Teilnahme am Mentorensystem verpflichtet. ¹⁹Hierbei werden Sie von Beginn des Studiums an insbesondere bei der Ausrichtung und Zusammenstellung des individuellen Studienplanes unterstützt. 20 Die Teilnahme am Mentorengespräch ist Voraussetzung zur Zulassung zur Master's Thesis.

(4) Die Unterrichtssprache im Masterstudiengang Physik (Biophysik) ist Deutsch.

§ 38 Prüfungsfristen, Studienfortschrittskontrolle, Fristversäumnis

- (1) Prüfungsfristen, Studienfortschrittskontrolle und Fristversäumnis sind in § 10 APSO geregelt.
- (2) ¹Bis zum Ende des zweiten Semesters müssen mindestens zwei Spezialfachmodule im Gesamtumfang von 10 Credits erfolgreich abgelegt werden. ²Bei Fristüberschreitung gilt § 10 Abs. 5 APSO.

§ 39 Prüfungsausschuss

Die für Entscheidungen in Prüfungsangelegenheiten zuständige Stelle gemäß § 29 APSO ist der Masterprüfungsausschuss der Fakultät für Physik.

§ 40 Anrechnung von Studienzeiten, Studien- und Prüfungsleistungen

Die Anrechnung von Studienzeiten, Studien- und Prüfungsleistungen regelt § 16 APSO.

§ 41 Studienbegleitendes Prüfungsverfahren

- (1) Mögliche Prüfungsformen gemäß §§ 12 und 13 APSO sind neben Klausuren und mündlichen Prüfungen in diesem Studiengang insbesondere Laborleistungen, Übungsleistungen (ggf. Testate), Berichte, Projektarbeiten, Präsentationen, Lernportfolios, wissenschaftliche Ausarbeitungen und der Prüfungsparcours.
 - a) ¹Eine Klausur ist eine schriftliche Arbeit unter Aufsicht mit dem Ziel, in begrenzter Zeit mit den vorgegebenen Methoden und definierten Hilfsmitteln Probleme zu erkennen und Wege zu ihrer Lösung zu finden und ggf. anwenden zu können. ²Die Dauer von Klausurarbeiten ist in § 12 Abs. 7 APSO geregelt.

- b) ¹Laborleistungen beinhalten je nach Fachdisziplin Versuche, Messungen, Arbeiten im Feld, Feldübungen etc. mit dem Ziel der Durchführung, Auswertung und Erkenntnisgewinnung. ²Bestandteil können z.B. sein: die Beschreibung der Vorgänge und die jeweiligen theoretischen Grundlagen inkl. Literaturstudium, die Vorbereitung und praktische Durchführung, ggf. notwendige Berechnungen, ihre Dokumentation und Auswertung sowie die Deutung der Ergebnisse hinsichtlich der zu erarbeitenden Erkenntnisse. ³Die Laborleistung kann durch eine Präsentation ergänzt werden, um die kommunikative Kompetenz bei der Darstellung von wissenschaftlichen Themen vor einer Zuhörerschaft zu überprüfen. ⁴Die konkreten Bestandteile der jeweiligen Laborleistung und die damit zu prüfenden Kompetenzen sind in der Modulbeschreibung aufgeführt.
- c) ¹Die **Übungsleistung (ggf. Testate)** ist die Bearbeitung von vorgegebenen Aufgaben (z.B. mathematischer Probleme, Programmieraufgaben, Modellierungen etc.) mit dem Ziel der Anwendung theoretischer Inhalte zur Lösung von anwendungsbezogenen Problemstellungen. ²Sie dient der Überprüfung von Fakten- und Detailwissen sowie dessen Anwendung. ³Die Übungsleistung kann u.a. schriftlich, mündlich oder elektronisch durchgeführt werden. ⁴Mögliche Formen sind bspw. Hausaufgaben, Übungsblätter, Programmierübungen, (E-)Tests, Aufgaben im Rahmen von Hochschulpraktika etc. ⁵Die konkreten Bestandteile der jeweiligen Übungsleistung und die damit zu prüfenden Kompetenzen sind in der Modulbeschreibung aufgeführt.
- d) ¹Ein Bericht ist eine schriftliche Aufarbeitung und Zusammenfassung eines Lernprozesses mit dem Ziel, Gelerntes strukturiert wiederzugeben und die Ergebnisse im Kontext eines Moduls zu analysieren. ²In dem Bericht soll nachgewiesen werden, dass die wesentlichen Aspekte erfasst wurden und schriftlich wiedergegeben werden können. ³Mögliche Berichtsformen sind bspw. Exkursionsberichte, Praktikumsberichte, Arbeitsberichte etc. ⁴Der schriftliche Bericht kann durch eine Präsentation ergänzt werden, um die kommunikative Kompetenz bei der Darstellung der Inhalte vor einer Zuhörerschaft zu überprüfen.
- e) ¹Im Rahmen einer **Projektarbeit** soll in mehreren Phasen (Initiierung, Problemdefinition, Rollenverteilung, Ideenfindung, Kriterienentwicklung, Entscheidung, Durchführung, Präsentation, schriftliche Auswertung) ein Projektauftrag als definiertes Ziel in definierter Zeit und unter Einsatz geeigneter Instrumente erreicht werden. ²Zusätzlich kann eine Präsentation Bestandteil der Projektarbeit sein, um die kommunikative Kompetenz bei der Darstellung von wissenschaftlichen Themen vor einer Zuhörerschaft zu überprüfen. ³Die konkreten Bestandteile der jeweiligen Projektarbeit und die damit zu prüfenden Kompetenzen sind in der Modulbeschreibung aufgeführt. ⁴Die Projektarbeit ist auch in Form einer Gruppenarbeit möglich. ⁵Hierbei soll nachgewiesen werden, dass Aufgaben im Team gelöst werden können. ⁶Der als Prüfungsleistung jeweils zu bewertende Beitrag muss deutlich individuell erkennbar und bewertbar sein. ⁷Dies gilt auch für den individuellen Beitrag zum Gruppenergebnis.
- f) ¹Die **wissenschaftliche Ausarbeitung** ist eine schriftliche Leistung, in der eine anspruchsvolle wissenschaftliche bzw. wissenschaftlich-anwendungsorientierte Fragestellung mit den wissenschaftlichen Methoden der jeweiligen Fachdisziplin selbstständig bearbeitet wird. ²Es soll nachgewiesen werden, dass eine den Lernergebnissen des jeweiligen Moduls entsprechende Fragestellung unter Beachtung der Richtlinien für wissenschaftliches Arbeiten vollständig bearbeitet werden kann - von der Analyse über die Konzeption bis zur Umsetzung. ³Mögliche Formen, die sich in ihrem jeweiligen Anspruchsniveau unterscheiden, sind z.B. Thesenpapier, Abstract, Essay, Studienarbeit, Seminararbeit etc. 4Die wissenschaftliche Ausarbeitung kann durch eine Präsentation und ggf. ein Kolloguium werden, um die kommunikative Kompetenz des Präsentierens wissenschaftlichen Themen vor einer Zuhörerschaft zu überprüfen. 5Die konkreten Bestandteile der jeweiligen wissenschaftlichen Ausarbeitung und die damit zu prüfenden Kompetenzen sind in der Modulbeschreibung aufgeführt.

- g) ¹Eine **Präsentation** ist eine systematische, strukturierte und mit geeigneten Medien (wie Beamer, Folien, Poster, Videos) visuell unterstützte mündliche Darbietung, in der spezifische Themen oder Ergebnisse veranschaulicht und zusammengefasst sowie komplexe Sachverhalte auf ihren wesentlichen Kern reduziert werden. ²Mit der Präsentation soll die Kompetenz nachgewiesen werden, sich ein bestimmtes Themengebiet in einer bestimmten Zeit so zu erarbeiten, dass es in anschaulicher, übersichtlicher und verständlicher Weise einem Publikum präsentiert bzw. vorgetragen werden kann. ³Außerdem soll nachgewiesen werden, dass in Bezug auf das jeweilige Themengebiet auf Fragen, Anregungen oder Diskussionspunkte des Publikums sachkundig eingegangen werden kann. ⁴Die Präsentation kann durch eine kurze schriftliche Aufbereitung ergänzt werden. ⁵Die Präsentation kann als Einzel- oder als Gruppenleistung durchgeführt werden. ⁶Der als Prüfungsleistung jeweils zu bewertende Beitrag muss deutlich individuell erkennbar und bewertbar sein. ⁷Dies gilt auch für den individuellen Beitrag zum Gruppenergebnis.
- h) ¹Eine **mündliche Prüfung** ist ein zeitlich begrenztes Prüfungsgespräch zu bestimmten Themen und konkret zu beantwortenden Fragen. ²In mündlichen Prüfungen soll nachgewiesen werden, dass die in den Modulbeschreibungen dokumentierten Qualifikationsziele erreicht wurden sowie die Zusammenhänge des Prüfungsgebietes erkannt wurden und spezielle Fragestellungen in diese Zusammenhänge eingeordnet werden können. ³Die mündliche Prüfung kann als Einzelprüfung oder als Gruppenprüfung durchgeführt werden. ⁴Die Dauer der Prüfung ist in § 13 Abs. 2 APSO geregelt.
- i) ¹Ein **Lernportfolio** ist eine nach zuvor festgelegten Kriterien ausgewählte schriftliche Darstellung von eigenen Arbeiten, mit der Lernfortschritt und Leistungsstand zu einem bestimmten Zeitpunkt und bezogen auf einen definierten Inhalt nachgewiesen werden sollen.
 ²Die Auswahl der Arbeiten, deren Bezug zum eigenen Lernfortschritt und ihr Aussagegehalt für das Erreichen der Qualifikationsziele müssen begründet werden.
 ³In dem Lernportfolio soll nachgewiesen werden, dass für den Lernprozess Verantwortung übernommen und die in der Modulbeschreibung dokumentierten Qualifikationsziele erreicht wurden.
 ⁴Als Bestandteile erfolgreicher Selbstlernkontrollen des Lernportfolios kommen je nach Modulbeschreibung insbesondere Arbeiten mit Anwendungsbezug, Internetseiten, Weblogs, Bibliographien, Analysen, Thesenpapiere sowie grafische Aufbereitungen eines Sachverhalts oder einer Fragestellung in Betracht.
 ⁵Die konkreten Bestandteile des jeweiligen Lernportfolios und die damit zu prüfenden Kompetenzen sind in der Modulbeschreibung aufgeführt.
- j) ¹Im Rahmen eines **Prüfungsparcours** sind innerhalb einer Prüfungsleistung mehrere Prüfungselemente zu absolvieren. ²Die Prüfungsleistung wird im Gegensatz zu einer Modulteilprüfung organisatorisch (räumlich bzw. zeitlich) zusammenhängend geprüft. ³Prüfungselemente sind mehrere unterschiedliche Prüfungsformate, die in ihrer Gesamtheit das vollständige Kompetenzprofil des Moduls erfassen. ⁴Prüfungselemente können insbesondere auch Prüfungsformen nach den Buchstaben a) bis i) sein. ⁵Die Prüfungsgesamtdauer ist in dem Modulkatalog anzugeben, Prüfungsform und Prüfungsdauer der einzelnen Prüfungselemente sind in der Modulbeschreibung anzugeben.
- (2) ¹Die Modulprüfungen werden in der Regel studienbegleitend abgelegt. ²Art und Dauer einer Modulprüfung gehen aus Anlage A hervor. ³Bei Abweichungen von diesen Festlegungen ist § 12 Abs. 8 APSO zu beachten. ⁴Für die Bewertung der Modulprüfung gilt § 17 APSO.
- (3) Auf Antrag der Studierenden und mit Zustimmung der Prüfenden können bei deutschsprachigen Modulen Prüfungen in englischer Sprache abgelegt werden.

§ 42 Anmeldung und Zulassung zur Masterprüfung

- (1) ¹Mit der Immatrikulation in den Masterstudiengang Physik (Biophysik) gelten Studierende zu den Modulprüfungen der Masterprüfung als zugelassen. ²Wurde gemäß Anlage B Nr. 5.1.2 bzw. 5.2.5 das Ablegen von Grundlagenprüfungen zur Auflage gemacht, so ist den Studierenden vom Prüfungsausschuss schriftlich mitzuteilen, zu welcher Modulprüfung abweichend von Satz 1 der Nachweis des Bestehens der Grundlagenprüfungen Zulassungsvoraussetzung ist.
- (2) Die Anmeldung zu einer Modulprüfung regelt § 15 Abs. 1 APSO.

§ 43 Umfang der Masterprüfung

- (1) Die Masterprüfung umfasst:
 - 1. die Modulprüfungen in den entsprechenden Modulen gemäß Abs. 2,
 - 2. die Master's Thesis gemäß § 46,
 - 3. das Masterkolloquium gemäß § 46 a
 - 4. sowie die in § 45 aufgeführten Studienleistungen.
- (2) ¹Die Modulprüfungen sind in der Anlage A aufgelistet. ²Es sind 48 Credits in Wahlmodulen nachzuweisen. ³Bei der Wahl der Module ist § 8 Abs. 2 APSO zu beachten.

§ 44 Wiederholung, Nichtbestehen von Prüfungen

- (1) Die Wiederholung von Prüfungen ist in § 24 APSO geregelt.
- (2) Das Nichtbestehen von Prüfungen regelt § 23 APSO.

§ 45 Studienleistungen

Neben den in § 43 Abs. 1 genannten Prüfungsleistungen ist die erfolgreiche Ablegung von Studienleistungen im Umfang von 37 Credits in den Modulen gemäß Anlage A nachzuweisen.

§ 45 a Multiple-Choice- Verfahren

Die Durchführung von Multiple-Choice-Verfahren ist in § 12 a APSO geregelt.

§ 46 Master's Thesis

(1) ¹Gemäß § 18 APSO haben Studierende im Rahmen der Masterprüfung eine Master's Thesis anzufertigen. ²Die Master's Thesis kann von fachkundigen Prüfenden der Fakultät Physik der Technischen Universität München ausgegeben und betreut werden (Themensteller oder Themenstellerin). ³Die fachkundig Prüfenden nach Satz 2 werden vom Prüfungsausschuss bestellt.

- (2) ¹Zur Master's Thesis wird zugelassen, wer den Nachweis über
 - 1. die Studienleistungen "Masterpraktikum" und "Masterseminar" (Anlage A 2.1),
 - 2. den Nachweis über das "Mentorengespräch"

erbracht hat. ²Sind die Zulassungsvoraussetzungen gemäß Satz 1 erfüllt, wird der oder die Studierende vom Prüfungsausschuss zur Master's Thesis zugelassen (Zulassungsbescheid). ³Gegen Vorlage des Zulassungsbescheids wird die Master's Thesis von fachkundigen Prüfenden ausgegeben und betreut (Themensteller oder Themenstellerin). ⁴Die Master's Thesis muss spätestens sechs Wochen nach "Zulassung zur Master's Thesis" begonnen werden.

- (3) ¹Die Zeit von der Ausgabe des Themas (Anmeldung) bis zur Ablieferung der Master's Thesis darf sechs Monate nicht überschreiten. ²Die Master's Thesis gilt als abgelegt und nicht bestanden, soweit sie ohne gemäß § 10 Abs. 7 APSO anerkannte triftige Gründe nicht fristgerecht abgeliefert wird. ³Die Master's Thesis kann in deutscher oder englischer Sprache angefertigt werden.
- (4) ¹Falls die Master's Thesis nicht mit mindestens "ausreichend" (4,0) bewertet wurde, so kann sie einmal mit neuem Thema wiederholt werden. ²Sie muss spätestens sechs Wochen nach dem Bescheid über das Ergebnis erneut angemeldet werden.

§ 46 a Masterkolloquium

- (1) ¹Studierende gelten als zum Masterkolloquium gemeldet, wenn sie die Master's Thesis erfolgreich abgeschlossen haben. ²Die Prüfung soll spätestens zwei Monate nach dem gemäß Satz 1 bestimmten Anmeldetermin erfolgen.
- (2) Das Masterkolloquium ist vom Themensteller oder der Themenstellerin der Master's Thesis und einem sachkundigen Beisitzer oder einer sachkundigen Beisitzerin durchzuführen.
- (3) Das Masterkolloquium ist auf Antrag der Studierenden in deutscher oder englischer Sprache zu halten.
- (4) ¹Die Dauer des Masterkolloquiums beträgt in der Regel 60 Minuten. ²Die Studierenden haben ca. 30 Minuten Zeit, ihre Master's Thesis vorzustellen. ³Daran schließt sich eine Disputation an, die sich ausgehend von dem Thema der Master's Thesis auf das weitere Fachgebiet erstreckt, dem die Master's Thesis zugehört.
- (5) ¹Das Masterkolloquium ist erfolgreich abgelegt, wenn es mindestens mit "ausreichend" (4,0) bewertet wird. ²Wurde das Masterkolloquium nicht bestanden, so gilt § 24 Abs. 7 APSO.
- (6) Für das Masterkolloquium werden 5 Credits vergeben.

§ 47 Bestehen und Bewertung der Masterprüfung

- (1) Die Masterprüfung ist bestanden, wenn alle im Rahmen der Masterprüfung gemäß § 43 Abs. 1 abzulegenden Prüfungen bestanden sind und ein Punktekontostand von mindestens 120 Credits erreicht ist.
- (2) ¹Die Modulnote wird gemäß § 17 APSO errechnet. ²Die Gesamtnote der Masterprüfung wird als gewichtetes Notenmittel der Module gemäß § 43 Abs. 2, der Master's Thesis und des Masterkolloquiums errechnet. ³Die Notengewichte der einzelnen Module entsprechen den zugeordneten Credits (vgl. Anlage A 4). ⁴Das Gesamturteil wird durch das Prädikat gemäß § 17 APSO ausgedrückt.

§ 48 Zeugnis, Urkunde, Diploma Supplement

¹Ist die Masterprüfung bestanden, so sind gemäß § 25 Abs. 1 und § 26 APSO ein Zeugnis, eine Urkunde und ein Diploma Supplement mit einem Transcript of Records auszustellen. ²Als Datum des Zeugnisses ist der Tag anzugeben, an dem alle Prüfungs- und Studienleistungen erfüllt sind.

§ 49 In-Kraft-Treten

- (1) ¹Diese Satzung tritt am 1. April 2018 in Kraft. ²Sie gilt für alle Studierenden, die ab dem Wintersemester 2018/2019 ihr Fachstudium an der Technischen Universität München aufnehmen.
- (2) ¹Gleichzeitig tritt die Fachprüfungs- und Studienordnung für den Masterstudiengang Physik (Biophysik) an der Technischen Universität München vom 9. Juni 2010 in der Fassung der Änderungssatzung vom 20. August 2015 außer Kraft. ²Studierende die bereits vor dem Wintersemester 2018/2019 ihr Fachstudium an der Technischen Universität München aufgenommen haben, schließen ihr Fachstudium nach der Satzung gemäß Satz 1 ab.

Anlage A: Prüfungsmodule

Abkürzungen

Sem = Semester CP = Credit (point) SWS = Semesterwochenstunden;

PF = Prüfungsform: S = Schriftlich/Klausur, M=Mündlich, L=Laborleistung, P=Präsentation,

PA = Projektarbeit;

Lernform: V = Vorlesung; Ü = Übung; P = Praktikum; S = Seminar;

Die Unterrichtssprache regelt § 37 Abs. 4 FPSO. Abweichungen vom Modulhandbuch und den Festlegungen dieses Anhangs sind gemäß § 12 Abs. 8 APSO rechtzeitig bekannt zu geben.

Studienbegleitende Prüfungen: Alle Prüfungen finden nach Möglichkeit in den beiden ersten Wochen der vorlesungsfreien Zeit statt. Die jeweiligen Wiederholungen zu diesen Prüfungen sollen noch vor Beginn der Vorlesungszeit, spätestens aber in der ersten Vorlesungswoche des jeweils folgenden Semesters angeboten werden. Dabei ist vom Prüfer oder der Prüferin sicherzustellen, dass die Prüfungsergebnisse im angemessenen zeitlichen Abstand (etwa vier Wochen) vor den Wiederholungsterminen bekannt gegeben werden.

A1 Vertiefungsphase

A1.1 Wahlmodule mit Prüfungsleistung

Nr	Wahlmodul	Zugobäriger Medulkateleg	Sem	СР	PF	SI	NS
INI	vvanimodui	Zugehöriger Modulkatalog		CP	PF	٧	Ü
1	Theoretische Physik	Spezifischer Katalog TH-BIO	1	10	s	4	2
2	Spezialfach 1	Spezifischer Katalog BIO	1	5	S oder M	2	1
3	Spezialfach 2	Spezifischer Katalog BIO	1	5	S oder M	2	1
4	Spezialfach 3	Komplementärer Katalog zu BIO	1	5	S oder M	2	1
5	Spezialfach 4	Spezifischer Katalog BIO	2	5	S oder M	2	1
6	Spezialfach 5	Spezifischer Katalog BIO	2	5	S oder M	2	1
7	Spezialfach 6	Komplementärer Katalog zu BIO	2	5	S oder M	2	1
8	Wahlmodul Nichtphysik	Katalog "Nichtphysik"	2	8	gem. Modul- beschrei- bung	4	2
	Gesamt			48		20	10

Die Prüfung zu Nr. 1 ist in der Regel schriftlich, kann aber in Übereinstimmung mit § 12 Abs. 8 APSO auch mündlich abgehalten werden. Der Richtwert für die Prüfungsdauer ist bei schriftlicher Durchführung ca. 90 Minuten, bei mündlicher Prüfung ca. 30 Minuten.

Die Kataloge zu den Nrn. 2 bis 7 werden jeweils für ein Studienjahr zu Beginn des Wintersemesters (spätestens vier Wochen vor Vorlesungsbeginn) durch den Prüfungsausschuss in geeigneter Weise den Studierenden bekanntgegeben. Die Prüfungen sind in der Regel schriftlich und dauern ca. 60 Minuten. In Übereinstimmung mit § 12 Abs. 8 APSO sind auch mündlich Abhaltungen möglich. Pro Spezialfach à 5 CP sind in diesem Fall ca. 25 Minuten anzusetzen.

Zu Nr. 8 wählen die Studierenden aus dem Katalog "Wahlmodul Nichtphysik" (Lehrangebot von anderen Fakultäten) Module im Gesamtumfang von mindestens 8 CP. Hierzu können auch mehrere Modulprüfungen mit jeweils weniger CP absolviert werden. Die Lehrveranstaltungen und die einzelne Prüfung erfolgen nach den Vorgaben der anbietenden Fakultät. Der Prüfungsausschuss aktualisiert fortlaufend den Fächerkatalog der Wahlmodule. Änderungen werden spätestens zu Beginn des Studienjahres auf den Internetseiten des Prüfungsausschusses bekannt gegeben.

Das Modul "Wahlmodul Nichtphysik" geht immer mit genau 8 CP in die Gesamtnote des Abschlusszeugnisses ein, auch wenn die Summe der Credits der berücksichtigten Modulprüfungen 8 CP übersteigt. Bei der Berücksichtigung der maximalen Anzahl von Modulprüfungen gilt sinngemäß § 17 Abs. 4 APSO. Die Note des Moduls "Wahlmodul Nichtphysik" errechnet sich aus dem nach zugeordneten CP gewichteten Notenmittel der berücksichtigten Modulprüfungen.

Die Kataloge sind exemplarisch für das Studienjahr 2016/17 in der Anlage C aufgeführt.

Von Beginn des Masterstudiums an werden die Studierenden mit einem Mentorensystem insbesondere bei der Ausrichtung und Zusammenstellung des individuellen Studienplanes unterstützt. Der Nachweis über das "Mentorengespräch" ist Zulassungsvoraussetzung für die Master's Thesis. Zusätzlich werden zur generellen fachlichen Orientierung kommentierte Musterstudienpläne im Internet hinterlegt.

A1.2 Pflichtmodul mit Studienleistung

Nr	Wahlmodul	Sem	СР	PF	Zugeordnete	SWS				
141	waiiiiiouui	Jeili	CF	Г	Lehrveranstaltung/en	٧	Ü	Р	S	
PH1031	Fortgeschrittene fachliche Schlüsselqualifikationen der Physik	1/2	10	L/P	Proseminar (Katalog)				4	
					Fortgeschrittenenpraktikum (Katalog)			6		
	Gesamt		10							

Das Modul "Fortgeschrittene Fachspezifische Schlüsselqualifikationen" geht als Studienleistung nur mit dem Prädikat "bestanden" in das Zeugnis ein. Das Modul ist semesterübergreifend angelegt, inkludiert die Lehrveranstaltungen Fortgeschrittenenpraktikum und Proseminar und vermittelt die Fähigkeit der experimentellen Erhebung von komplexen Messwerten und Daten und deren wissenschaftliche Darstellung und Präsentation. Zum Bestehen des Moduls müssen kumulativ sechs Versuche des Katalogs Fortgeschrittenenpraktikum und eine Präsentation im Rahmen eines Proseminars (Katalog) erfolgreich absolviert werden.

A1.3 Wahlmodul mit Studienleistung

	Wahlmodul	Som	Sem CP PF Zugeordnete			SWS				
	Waiiiiioddi	Seili	CF		Lehrveranstaltung/en	V	Ü	Р	S	
1	Allgemeinbildende Fächer	2	3		Katalog					
	Gesamt		3							

Das Wahlmodul "Allgemeinbildenden Fächer" geht nur mit dem Prädikat "bestanden" in das Zeugnis ein und wird in der Gesamtnote nicht berücksichtigt. Die Studierenden wählen aus einem von der Fakultät herausgegebenen Katalog Module im Gesamtumfang von 3 Credits aus. Weitere Modalitäten ergeben sich aus den jeweiligen Modulbeschreibungen.

A2 Forschungsphase

A2.1 Pflichtmodule mit Studienleistung

Nr	Wahlmodul	Sem	CP	PF	SWS		
	Wallinouul	OCIII	5	• •	Р	S	
PH1063	Masterseminar	3	10	Р		10	
PH1073	Masterpraktikum	3	14	L	10		
	Gesamt		24		10	10	

Die Module **Masterseminar** und **Masterpraktikum** sind eng mit der Master's Thesis verknüpft. Sie gehen nur mit dem Prädikat "bestanden" in das Zeugnis ein und werden in der Gesamtnote nicht berücksichtigt.

Zunächst erarbeitet man sich im dritten Semester im Rahmen des Masterseminars (10 CP) die notwendigen Fachkenntnisse auf dem aktuellen Niveau der internationalen Forschung. Das Masterpraktikum (14 CP) dient dem Erwerb spezieller experimenteller bzw. theoretischer Fertigkeiten sowie der Konzipierung und Schaffung weiterer Voraussetzungen für die Durchführung des Forschungsprojekts und dessen Bearbeitung im Rahmen der Master's Thesis.

A2.2 Master's Thesis und Masterkolloquium

Nr	Wahlmodul	Sem	СР	PF
PH1083	Master's Thesis	3/4	30	PA
PH1093	Masterkolloquium	4	5	M
	Gesamt		35	

Für die Master's Thesis werden 30 Credits, für das Masterkolloquium 5 Credits vergeben. Die Bearbeitungsdauer der Master's Thesis beträgt maximal sechs Monate. Die Master's Thesis beginnt in der Regel in den letzten Wochen des dritten Semesters und nimmt einen Großteil des vierten Semesters ein.

A3 Credit-Bilanz Masterstudiengang Physik (Biophysik)

		le mit sleistung	Module mit Studienleistung					
Sem.	Pflicht	Wahl	Pflicht	Wahl	Thesis	Summe Credits	Gesamt SWS	Anzahl Prüfungen
1		25	5			30	20	5
2		23	5	3		31	25	6
3			24		5	29	20	2
4	5				25	30		2
Summe	5	48	34	3	30	120	65	15

A4 Ermittlung der Gesamtnote

Nr	Modul	CP	ca %
1	Theoretische Physik	10	12
2	Spezialfach 1	5	6
3	Spezialfach 2	5	6
4	Spezialfach 3	5	6
5	Spezialfach 4	5	6
6	Spezialfach 5	5	6
7	Spezialfach 6	5	6
8	Wahlmodul Nichtphysik	8	9,6
9	Thesis	30	36,1
10	Kolloquium	5	6
	Summe	83	100

Anlage B: Eignungsverfahren

1. Zweck des Verfahrens

¹Die Qualifikation für den Masterstudiengang Physik (Biophysik) setzt neben den Voraussetzungen des § 36 Abs. 1 Nr. 1 den Nachweis der Eignung gemäß § 36 Abs. 1 Nr. 2 nach Maßgabe der folgenden Regelungen voraus. ²Die besonderen Qualifikationen und Fähigkeiten der Bewerber bzw. Bewerberinnen sollen dem Berufsfeld des Physikers entsprechen. ³Einzelne Eignungsparameter sind:

- 1.1 vorhandene Fachkenntnisse aus dem Erststudium auf dem Gebiet der Physik in Anlehnung an den Bachelorstudiengang Physik der Technischen Universität München,
- 1.2 Fähigkeit zu wissenschaftlicher bzw. grundlagen- und methodenorientierter Arbeitsweise,
- 1.3 Interesse für physikalische Fragestellungen, insbesondere auf dem Gebiet der angewandten Physik, und allgemeines naturwissenschaftliches Verständnis.

2. Verfahren zur Prüfung der Eignung

- 2.1 Das Verfahren zur Prüfung der Eignung wird halbjährlich durch die Fakultät für Physik durchgeführt.
- 2.2 Die Anträge auf Zulassung zum Verfahren sind zusammen mit den Unterlagen nach 2.3.1 bis einschließlich 2.3.3 für das Wintersemester im Online-Bewerbungsverfahren bis zum 31. Mai und für das Sommersemester bis zum 30. November an die Technische Universität München zu stellen (Ausschlussfristen).
- 2.3 Dem Antrag sind beizufügen:
- 2.3.1 ein tabellarischer Lebenslauf,
- 2.3.2 ein Transcript of Records mit Modulen im Umfang von mindestens 130 Credits sowie das dem Hochschulabschluss zugrundeliegende Curriculum (z.B. Modulhandbuch). Das Transcript of Records muss von der zuständigen Prüfungsbehörde oder dem zuständigen Studiensekretariat ausgestellt sein.
- 2.3.3 eine schriftliche Begründung von maximal zwei DIN-A4 Seiten für die Wahl des Studiengangs Physik (Biophysik) an der Technischen Universität München, in der die Bewerber oder Bewerberinnen darlegen, aufgrund welcher Qualifikation und spezifischen Interessen sie sich für den Masterstudiengang Physik (Biophysik) an der Technischen Universität München für besonders geeignet halten; weitere Anhaltspunkte für die schriftliche Begründung liefern die in Nr. 1 Satz 2 und 3 aufgeführten Eignungsparameter.
- 2.4 Bewerberinnen und Bewerber aus dem Bachelorstudiengang Physik an der Technischen Universität München müssen dem Antrag die Unterlagen nach Nr. 2.3.2 nicht beifügen.

3. Kommission zum Eignungsverfahren

- 3.1 ¹Das Eignungsverfahren wird von einer Kommission durchgeführt, der in der Regel der oder die für den Masterstudiengang Physik (Biophysik) zuständige Studiendekan oder Studiendekanin, mindestens zwei Hochschullehrer oder Hochschullehrerinnen und mindestens ein wissenschaftlicher Mitarbeiter oder eine wissenschaftliche Mitarbeiterin angehören. ²Mindestens die Hälfte der Kommissionsmitglieder müssen Hochschullehrer oder Hochschullehrerinnen sein. ³Ein studentischer Vertreter oder eine studentische Vertreterin soll in der Kommission beratend mitwirken.
- 3.2 ¹Die Bestellung der Mitglieder erfolgt durch den Fakultätsrat im Benehmen mit dem Studiendekan oder der Studiendekanin. ²Mindestens ein Hochschullehrer oder eine Hochschullehrerin wird als stellvertretendes Mitglied der Kommission bestellt. ³Den Vorsitz der Kommission führt in der Regel der Studiendekan oder die Studiendekanin. ⁴Für den Geschäftsgang gilt Art. 41 BayHSchG in der jeweils geltenden Fassung.

4. Zulassung zum Eignungsverfahren

4.1 Ablehnung aufgrund fehlender bzw. nicht vollständiger Unterlagen

Die Zulassung zum Eignungsverfahren setzt voraus, dass sowohl die gemäß § 7 Abs. 3 der Satzung der Technischen Universität München über die Immatrikulation, Rückmeldung, Beurlaubung und Exmatrikulation (ImmatS) in der jeweils geltenden Fassung geforderten Unterlagen als auch die in Nr. 2.3 genannten Unterlagen fristgerecht und vollständig vorliegen.

4.2 Ablehnung aufgrund fehlender Qualifikation gemäß § 36 Abs. 2

¹Die Kommission prüft auf der Grundlage der eingereichten Unterlagen nach 2.3.2 die vorhandenen Fachkenntnisse aus dem Erststudium gemäß Nr. 1.1. ²Die curriculare Analyse erfolgt dabei nicht durch schematischen Abgleich der Module, sondern auf der Basis von Kompetenzen. ³Sie orientiert sich an den in der folgenden Tabelle aufgelisteten elementaren Fächergruppen des Bachelorstudiengangs Physik der Technischen Universität München.

Fächergruppe	Credits TUM
Grundlagen der Experimentalphysik (Mechanik, Elektrodynamik, Optik, Thermodynamik, Atomphysik)	34
Fortgeschrittene Experimentalphysik (Einführung in Kern-, Teilchen- und Astrophysik, Einführung in die Physik der kondensierten Materie)	16
Grundlagen der Theoretischen Physik (Mechanik, Elektrodynamik, Quantenmechanik, Thermodynamik und Statistik)	34
Grundkurs Mathematik (Grundlagen der Lineare Algebra, Grundkurs Analysis)	32
Laborpraktika	21
Bachelorarbeit (wissenschaftliche bzw. grundlagen- und methodenorientierte Arbeitsweise)	12

⁴Bei mindestens gleichwertigen Kompetenzen erhält der Bewerber oder die Bewerberin maximal 60 Punkte. ⁵Fehlende Kompetenzen werden entsprechend den Credits der zugeordneten Module des Bachelorstudiengangs Physik der Technischen Universität München abgezogen. ⁶Die daraus resultierenden Punkte gehen als Basispunktzahl in das spätere Eignungsverfahren ein. ⁷Wer weniger als 30 Punkte erhalten hat, wird nicht zum Eignungsverfahren zugelassen. ⁸Die Punktegrenze folgt aus den Bestimmungen des § 36 Abs. 3 der FPSO.

- 4.3 Wer nicht zugelassen wird, erhält einen mit Gründen und Rechtsbehelfsbelehrung versehenen Ablehnungsbescheid.
- 4.4 Mit den Bewerbern und Bewerberinnen, die die erforderlichen Voraussetzungen erfüllen, wird das Eignungsverfahren gemäß Nr. 5 durchgeführt.

5. Durchführung des Eignungsverfahrens

- 5.1 Erste Stufe der Durchführung des Eignungsverfahrens.
- 5.1.1 ¹Die Kommission bewertet die eingereichten Unterlagen auf einer Skala von 0 bis 100 Punkten, wobei 0 das schlechteste und 100 das beste zu erzielende Ergebnis ist. ²Folgende Bewertungskriterien gehen ein:

1. fachliche Qualifikation

¹Die Punktzahl aus der Überprüfung gemäß 4.2 wird übernommen. ²Die Maximalpunktzahl beträgt 60.

2. Abschlussnote

¹Für jede Zehntelnote, die der über Prüfungsleistungen im Umfang von 130 Credits errechnete Schnitt besser als 3,0 ist, wird ein Punkt vergeben. ²Die Maximalpunktzahl beträgt 20. ³Negative Punkte werden nicht vergeben. ⁴Bei ausländischen Abschlüssen wird die über die bayerische Formel umgerechnete Note herangezogen. ⁵Liegt zum Zeitpunkt der Bewerbung ein Abschlusszeugnis mit mehr als 130 Credits vor, erfolgt die Bewertung auf der Grundlage der am besten benoteten Module im Umfang von 130 Credits. ⁶Die Bewerber oder Bewerberinnen haben diese im Rahmen des Antrags aufzulisten sowie die Richtigkeit der gemachten Angaben schriftlich zu versichern. ⁷Der Schnitt wird aus benoteten Modulprüfungen im Umfang von 130 Credits errechnet. ⁸Der Gesamtnotenschnitt wird als gewichtetes Notenmittel der Module errechnet. ⁹Die Notengewichte der einzelnen Module entsprechen den zugeordneten Credits. ¹⁰Bei der Notenermittlung wird eine Stelle nach dem Komma berücksichtigt, alle weiteren Stellen werden ohne Rundung gestrichen.

3. Begründungsschreiben

¹Die schriftliche Begründung des Bewerbers oder der Bewerberin wird von zwei Kommissionsmitgliedern auf einer Skala von 0 bis 20 Punkten bewertet. ²Der Inhalt des Begründungsschreibens wird nach folgenden Kriterien bewertet:

- 1. Diskussion der Qualifikation in Bezug auf die Anforderungen des Studiengangs und die Zulassungsvoraussetzungen gemäß Punkt 4.2 (max. 8 Punkte)
- 2. Diskussion der Ziele im gewählten Studiengang; die Bewerber oder Bewerberinnen sollen darlegen, dass sie sich bereits mit dem gewählten Studiengang auseinandergesetzt haben und zumindest eine grobe Auswahl getroffen haben, welche Bereiche aus dem großen Wahlangebot für sie besonders interessant sind (max. 12 Punkte).

³Die Kommissionsmitglieder bewerten unabhängig jedes der beiden Kriterien. ⁴Die Punktzahl ergibt sich aus dem arithmetischen Mittel der Einzelbewertungen, wobei auf ganze Punktzahlen aufgerundet wird. ⁵Die Gesamtpunktzahl ergibt sich durch Addition der Punkte aus 5.1.1.1 bis 5.1.1.3.

- 5.1.2 ¹Wer mindestens 66 Punkte erreicht hat, erhält eine Bestätigung über das bestandene Eignungsverfahren. ²In Fällen, in denen gemäß § 36 Abs. 3 festgestellt wurde, dass nur einzelne fachliche Voraussetzungen für das Masterstudium aus dem Erststudium nicht vorliegen, kann die Kommission zum Eignungsverfahren als Auflage fordern, Grundlagenprüfungen aus dem Bachelorstudiengang Physik im Ausmaß von maximal 30 Credits abzulegen. ³Diese Grundlagenprüfungen müssen im ersten Studienjahr erfolgreich abgelegt werden. ⁴Nicht bestandene Grundlagenprüfungen dürfen innerhalb dieser Frist nur einmal zum nächsten Prüfungstermin wiederholt werden. ⁵Der Prüfungsausschuss kann die Zulassung zu einzelnen Modulprüfungen vom Bestehen der Grundlagenprüfung abhängig machen.
- 5.1.3 ¹Ungeeignete Bewerber oder Bewerberinnen mit einer Gesamtpunktzahl von weniger als 55 Punkten erhalten einen mit Gründen und Rechtsbehelfsbelehrung versehenen Ablehnungsbescheid, der von der Leitung der Hochschule zu unterzeichnen ist. ²Die Unterschriftsbefugnis kann delegiert werden. ³Auf Antrag erhalten abweichend von Abs. 5.1.1 bis 5.1.2 diejenigen Bewerber und Bewerberinnen anstelle einer Direktablehnung eine Einladung zur zweiten Stufe des Eignungsverfahrens, die im Fall des Erreichens der Bestnote eine Direktzulassung oder eine Zulassung zur zweiten Stufe erhalten hätten und Anspruch auf Nachteilsausgleich wegen Behinderung, chronischer oder längerfristiger Erkrankung haben. ⁴Dem Antrag sind entsprechende Nachweise beizufügen.

- 5.2 Zweite Stufe der Durchführung des Eignungsverfahrens
- 5.2.1 ¹Die übrigen Bewerber oder Bewerberinnen werden zu einem Eignungsgespräch eingeladen. ²Im Rahmen der zweiten Stufe des Eignungsverfahrens wird die im Erststudium erworbene Qualifikation und das Ergebnis des Auswahlgesprächs bewertet. ³Der Termin für das Eignungsgespräch wird mindestens eine Woche vorher bekannt gegeben. ⁴Zeitfenster für eventuell durchzuführende Eignungsgespräche müssen vor Ablauf der Bewerbungsfrist festgelegt sein. ⁵Der festgesetzte Termin des Gesprächs ist vom Bewerber einzuhalten. ⁶Wer aus von ihm nicht zu vertretenden Gründen an der Teilnahme am Eignungsgespräch verhindert ist, kann auf begründeten Antrag ein Nachtermin bis spätestens zwei Wochen vor Vorlesungsbeginn erhalten.
- 5.2.2 ¹Das Eignungsgespräch wird von zwei Mitgliedern der Kommission für die Bewerberinnen oder Bewerber einzeln durchgeführt und dauert mindestens 20 und höchstens 30 Minuten. ²Mit Einverständnis des Bewerbers oder der Bewerberin kann ein Mitglied der Gruppe der Studierenden in der Zuhörerschaft zugelassen werden. ³Der Inhalt des Gespräches erstreckt sich auf die folgenden Schwerpunkte:

	1	Eigene Einschät Wahl des S	zung des persör Studiengangs	lichen	Eignungsprofils	und B	egründung der
Ī	2	Physikalisches	Grundwissen	und	Verständnis	für	physikalische
			ıngen und Zusa eges für eine exe				kizzierung des

⁴Fachwissenschaftliche Kenntnisse, die erst in dem Masterstudiengang Physik (Biophysik) vermittelt werden sollen, entscheiden nicht. ⁵In dem Gespräch muss der Bewerber den Eindruck bestätigen, dass er für den Studiengang geeignet ist.

- 5.2.3 ¹Die beiden Kommissionsmitglieder bewerten unabhängig jeden der beiden Schwerpunkte auf einer Skala von 0 bis 15, wobei 0 das schlechteste und 15 das beste zu erzielende Ergebnis ist. ²Die Punktzahl des Bewerbers oder der Bewerberin ergibt sich aus dem arithmetischen Mittel der summierten Einzelbewertungen, wobei der zweite Schwerpunkt doppelt gewichtet wird. ³Die Maximalpunktzahl beträgt entsprechend 45 Punkte. ⁴Nichtverschwindende Kommastellen sind aufzurunden.
- 5.2.4 ¹Die Gesamtpunktzahl der zweiten Stufe ergibt sich als Summe der Punkte aus 5.2.3 sowie der Punkte aus 5.1.1.1 (fachliche Qualifikation) und 5.1.1.2 (Abschlussnote). ²Wer 80 oder mehr Punkte erreicht hat, wird als geeignet eingestuft.
- 5.2.5 ¹Bewerber und Bewerberinnen, die als geeignet eingestuft werden, erhalten eine Bestätigung über das bestandene Eignungsverfahren. ²In Fällen, in denen gemäß § 36 Abs. 3 festgestellt wurde, dass nur einzelne fachliche Voraussetzungen für das Masterstudium aus dem Erststudium nicht vorliegen, kann die Kommission zum Eignungsverfahren als Auflage fordern, Grundlagenprüfungen aus dem Bachelorstudiengang Physik im Ausmaß von maximal 30 Credits abzulegen. ³Diese Grundlagenprüfungen müssen im ersten Studienjahr erfolgreich abgelegt werden. ⁴Nicht bestandene Grundlagenprüfungen dürfen innerhalb dieser Frist nur einmal zum nächsten Prüfungstermin wiederholt werden. ⁵Der Prüfungsausschuss kann die Zulassung zu einzelnen Modulprüfungen vom Bestehen der Grundlagenprüfungen abhängig machen.
- 5.2.6 ¹Bewerber und Bewerberinnen, die nicht als geeignet eingestuft werden, erhalten einen mit Gründen und Rechtsbehelfsbelehrung versehenen Ablehnungsbescheid. ²Der Bescheid ist von der Leitung der Hochschule zu unterzeichnen. ³Die Unterschriftsbefugnis kann delegiert werden.
- 5.3 Zulassungen im Masterstudiengang Physik (Biophysik) gelten bei allen Folgebewerbungen in diesem Studiengang.

6. Niederschrift

¹Über den Ablauf des Eignungsverfahrens in der ersten und in der zweiten Stufe ist eine Niederschrift anzufertigen, aus der Tag, Dauer und Ort des Eignungsverfahrens, die Namen der Kommissionsmitglieder, die Namen der Bewerber oder Bewerberinnen und die Beurteilung der Kommissionsmitglieder sowie das Gesamtergebnis ersichtlich sein müssen. ²Aus der Niederschrift müssen die wesentlichen Gründe und die Themen des Gesprächs mit den Bewerbern oder Bewerberinnen ersichtlich sein; die wesentlichen Gründe und die Themen können stichwortartig aufgeführt werden.

7. Wiederholung

Bewerber und Bewerberinnen, die den Nachweis der Eignung für den Masterstudiengang Physik (Biophysik) nicht erbracht haben, können sich einmal erneut zum Eignungsverfahren anmelden.

Anlage C: Studienplan und Modulkataloge

1. Studienplan

					SW	/S		
	Modul	Anmerkung	ECTS	Summe	V	Ü	Р	S
	Vertiefungsphase							
1	Theoretische Physik	Spezifischer Katalog BIO	10		4	2		
	Spezialfachmodul 1	Spezialfachkatalog komplementär BIO	5		2	1		
	Spezialfachmodul 2	Spezialfachkatalog BIO	5		2	1		
	Spezialfachmodul 3	Spezialfachkatalog BIO	5		2	1		
	Fortgeschrittene fachspezifische Schlüsselqualifikation	5 Versuche im Fortgeschrittenenpraktikum	5				5	
			30	20	10	5	5	0
2	Spezialfachmodul 4	Spezialfachkatalog komplementär BIO	5		2	1		1
	Spezialfachmodul 5	Spezialfachkatalog BIO	5		2	1		1
	Spezialfachmodul 6	Spezialfachkatalog BIO	5		2	1		1
	Fortgeschrittene fachspezifische Schlüsselqualifikation	Proseminar und 1 Versuch im Fortgeschrittenenpraktikum	5				1	2
	Wahlmodul Nichtphysik	Wahlfachkatalog BIO	8		4	2		
	Allgemeinbildende Fächer	Katalog dynamisch	3		2			
			31	25	12	5	1	7
	Forschungsphase							
3	Masterseminar	Fachliche Spezialisierung	10					10
	Masterpraktikum	Methodenkenntnis u. Projektplanung	14				10	
	Masterarbeit		5					
			29					
4	Masterarbeit		25					
	Masterkolloquium		5					
			30					

2. Exemplarischer Katalog der Spezialfachmodule, beruhend auf dem Angebot des Studienjahres 2016/17. Der Katalog wird jährlich vom Prüfungsausschuss aktualisiert und bekanntgegeben.

Angebot im Wintersemester:

Modulnr.	Titel	СР	KTA	KM	BIO	AEP
PH1001	Theoretische Festkörperphysik	10		_		_
PH1002	Quantenmechanik 2	10	_			
PH2001	Biomedizinische Physik 1	5			\checkmark	\checkmark
PH2012	Molekulare Biophysik: Spektroskopische Methoden	5			\checkmark	
PH2013	Biophysik der Zelle 1	5			√	✓
PH2023	Kinetik zellulärer Reaktionen	5			√	
PH2024	Light Sources and Gas Laser	5				√
PH2025	Quantenoptik 1	5		√		√
PH2027	Nonlinear Dynamics and Complex Systems 1	5		√	√	√
PH2031	Supraleitung und Tieftemperaturphysik 1	5		√		√
PH2033	Magnetism	5		√		√
PH2035	Plasmaphysik 1	5	√			√
PH2037	Magnetohydrodynamic Phenomena - an Introduction	5	√			√
PH2043	Allgemeine Relativitätstheorie und Kosmologie	10	√			
PH2044	Tests des Standardmodells der Teilchenphysik 1	5	√			
PH2046	Polymerphysik 1	5		√		√
PH2048	Nanostructured Soft Materials 1	5		√		√
PH2050	Reaktorphysik 1 und Anwendungen der Kerntechnik	5	√	√		√
PH2053	Physics with Neutrons 1	5		√		√
PH2057	Computational Physics 1	5	√	√		√
PH2058	Einführung in die Astrophysik	5	√			
PH2066	Teilchenphysik mit Neutronen 1	5	√			
PH2071	Grundlagen der Oberflächen- und Nanowissenschaften	5		√		√
PH2073	Astroteilchenphysik 1	5	√			
PH2075	Physik mit Positronen 1	5	√	√		√
PH2078	Explodierende Sterne	5	√			
PH2081	Teilchenphysik mit höchstenergetischen Beschleunigern	5	√			
PH2085	Magnetismus und Spin-Phänomene in niedrigdimensionalen Elektronensystemen	5		✓		√
PH2116	Group Theory in Physics	5	√			
PH2122	Effektive Feldtheorien	5	√			
PH2140	Nanoscience mittels Rastersondenmikroskopie	5		√		√
PH2155	Halbleiterphysik	10		✓		√
PH2158	Ultrakurzzeitphysik 1	5		√		√
PH2165	Quantenmechanik molekularer Systeme	5			√	
PH2166	Physics and Chemistry of Functional Interfaces	5		✓		√

Modulnr.	Titel	СР	KTA	KM	BIO	AEP
PH2175	Turbulence in neutral Fluids und Plasmas	5				√
PH2181	Image Processing in Physics	5			√	√
PH2182	Modern X-Ray Physics	5		√	√	√
PH2183	Halbleiter-Nanofabrikation und Nano-analytische Methoden	5		✓		√
PH2189	Solid State Spectroscopy	5		✓		√
PH2190	Ultrarelativistic heavy-ion collisions: The physics of the Quark-Gluon Plasma	5	✓			
PH2197	Photochemical Energy Conversion Artificial Photosynthesis	5		✓		✓
PH2199	Kosmologie	5	√			
PH2201	Energy Materials 1	5		√		√
PH2202	Von Quarks zu Hadronen: Tiefunelastische Streuung und Partonmodell	5	✓			
PH2218	Materialphysik auf atomarer Skala 1	5		√		✓
PH2221	Datenanalyse	5	√			
PH2223	Vacuum, Surfaces and Thin Films	5		√		√
PH2226	Chemistry in Biomedical Imaging for Physicists	5			√	√
PH2228	Synthetische Biologie 1	5			√	
PH2237	Quantum Information	5		✓		
PH2238	Konzepte für zukünftige Hadroncolliderexperimente 1	5	✓			
PH2239	Photonische Quantentechnologien	5		√		
PH2240	Physikalische Prinzipien in biologischen Systemen	10			√	
PH2241	Hadron Physics at Accelerators, Symmetries and Neutron Stars 1	5	✓			
PH2242	Gravitational Lensing	5	√			
PH2243	Physik unter extremen Bedingungen	5		√		
PH2244	Field Theory in Condensed Matter Physics	5		√		
PH2245	Effektive Feldtheorien	5	√			
PH2252	Dynamics of DNA Topology during Transcription and Replication	5			✓	

Angebot im Sommersemester:

Modulnr.	Titel	СР	KTA	KM	BIO	AEP
PH1005	Theoretical Particle Physics	10	√			
PH2002	Biomedizinische Physik 2	5			√	√
PH2011	Streumethoden in der molekularen Biophysik	5			√	
PH2014	Biophysik der Zelle 2	5			√	√
PH2019	Molecular Dynamics Simulations	5			√	√
PH2024	Light Sources and Gas Laser	5				√
PH2026	Quantenoptik 2	5		√		√
PH2028	Nonlinear Dynamics and Complex Systems 2	5		√	√	√
PH2032	Supraleitung und Tieftemperaturphysik 2	5		√		√
PH2034	Spinelektronik	5		√		√
PH2036	Plasmaphysik 2	5	√			√
PH2040	Relativität, Teilchen und Felder	10	√			
PH2045	Tests des Standardmodells der Teilchenphysik 2	5	√			
PH2047	Polymerphysik 2	5		√		√
PH2049	Nanostructured Soft Materials 2	5		√		√
PH2051	Reaktorphysik 2 und neue Konzepte in der Kerntechnik	5	√	√		√
PH2053	Physics with Neutrons 1	5		√		√
PH2054	Physics with Neutrons 2	5		√		√
PH2059	Hochauflösende Astronomie: Adaptive Optik und Optische Interferometrie	5	√			
PH2068	Fuel Cells in Energy Technology	5		√		√
PH2072	Aktuelle Themengebiete der Oberflächen- und Nanowissenschaften	5		✓		√
PH2074	Astroteilchenphysik 2	5	√			
PH2076	Physik mit Positronen 2	5	√	√		✓
PH2080	Einführung in die theoretische Astrophysik	5	√			
PH2082	Teilchenphysik mit kosmischen und mit erdgebundenen Beschleunigern	5	√			
PH2090	Computational Physics 2	5	√	✓		✓
PH2099	Computergestützte Datenanalyse	5	√			
PH2107	Physik und Technik von magnetischen Messverfahren	5		√		√
PH2113	Quantum Field Theory in a Nutshell	10		√		
PH2114	Beobachtende Astrophysik	5	√			
PH2123	Advanced Effective Field Theories	5	√			
PH2134	Advanced Materials Analysis with Synchrotron Radiation: Techniques and Applications	5		√		√
PH2140	Nanoscience mittels Rastersondenmikroskopie	5		√		√
PH2154	Physikalisch-chemische Grundlagen genetischer Informationsverarbeitung	5			√	
PH2157	Applied Superconductivity	10		√		✓

Modulnr.	Titel	СР	KTA	KM	BIO	AEP
PH2159	Ultrakurzzeitphysik 2	5		√		√
PH2160	Renewable Energy	10		√		√
PH2170	Nanoelectronics and Nanooptics	10		√		√
PH2171	Halbleiterelektronik und Photonische Bauteile	5		√		√
PH2172	Two Dimensional Materials	5		√		√
PH2173	Nanoplasmonics	5		√		√
PH2181	Image Processing in Physics	5			√	√
PH2182	Modern X-Ray Physics	5		√	√	✓
PH2185	Fortgeschrittene Quantenfeldtheorie	10	√			
PH2187	Elementare Prozesse in molekularen Systemen	5			√	
PH2191	Strukturaufklärung, Bauprinzipien und Synthese kristalliner Materialien in zwei und drei Dimensionen	5		✓		
PH2196	Fusion Research	5	✓			\checkmark
PH2206	Extragalactic Astrophysics	5	√			
PH2207	Energy Materials 2	5		√		√
PH2208	Gas Detectors: Theory and Application	5	√			
PH2209	Introduction to NMR and NMR Imaging	10			\checkmark	✓
PH2210	Teilchenoszillationen	5	√			
PH2214	From Quarks to Hadrons: Low and Intermediate Energy Regime	5	✓			
PH2219	Materialphysik auf atomarer Skala 2	5		✓		✓
PH2222	Monte Carlo Methods	5	√			
PH2223	Vacuum, Surfaces and Thin Films	5		√		√
PH2231	Advances in Bottom-Up Approaches in Nanotechnology	5		√		\checkmark
PH2233	Applied Plasma Physics: Large Vortices (Zonal Flows and Other Structures) in Fusion Reactors, Jupiter, Climate and Astrophysics		✓			√
PH2235	Synthetische Biologie 2	5			√	
PH2246	Topology and New Kinds of Order in Condensed Matter Physics	10		√		
PH2247	Konzepte für zukünftige Hadroncolliderexperimente 2	5	√			
PH2248	Kosmologie und Strukturbildung	10	✓			
PH2249	Hadronenphysik an Beschleunigern, Symmetrien und Neutronensterne 2	5	✓			
PH2250	Supersymmetrie und extra Dimensionen	10	√			
PH2253	Boot Camp: Introduction into Neutrino Astronomy and IceCube Software	5	✓			

3. Exemplarischer Katalog der nichtphysikalischen Wahlfachmodule, beruhend auf dem Angebot des Studienjahres 2016/17. Der Katalog wird jährlich vom Prüfungsausschuss aktualisiert und bekanntgegeben.

Modulnr.	Titel	СР
BV440007	Algorithms and Data Structures	3
BV640006	Zerstörungsfreie Prüfung im Ingenieurwesen	5
CH1018	Ausgewählte Kapitel moderner Chemie für Physiker 2	4
CH1047	Grenzflächen und Partikeltechnologie	4
CH5112	Quantenmechanische Grundlagen der NMR-Spektroskopie	4
CH5115	Molekulare Biotechnologie	4
CH5123	Physikalische Chemie der Cluster	4
CH5156	Grenzflächenprozesse (Vorlesung)	4
CH5174	Biological solid-state NMR	3
EI7139	Hochfrequenzmesstechnik	6
El7240	Memory Technologies for Data Storage	6
El7246	Neuroprothetik	6
El7267	Nanotechnology for Energy Systems	5
E17308	Antennas and Wave Propagation	6
El7310	Batteriesystemtechnik	5
El7319	Computational Methods in Nanoelectronics	5
EI7347	Magnetische Felder in der Energietechnik	5
E17375	Quantum Nanoelectronics	5
EI7384	System-on-Chip Technologies	5
El7414	Advanced Electronic Devices	5
EI74341	Mixed Signal Electronics	5
EI7473	BioMEMS and Microfluidics	5
E17476	Advanced Electromagnetics	6
EI7489	Nachhaltige Mobilität	5
El7521	Musikalische Akustik	3
El7619	Simulation of Quantum Devices	5
El7626	Halbleiter Ober- und Grenzflächen	5
EI7646	Computational Neuroscience: Eine Ringvorlesung von Modellen bis zu Anwendungen	3
E18030	High Voltage Technology - Fundamentals	5
El8033	Energy Storage	5
IN1503	Advanced Programming	5
IN2001	Algorithms for Scientific Computing	8
IN2003	Efficient Algorithms and Data Structures	8
IN2010	Modellbildung und Simulation	8
IN2013	High Performance Computing - Programmiermodelle und Skalierbarkeit	4
IN2016	Bildverstehen II: Robot Vision	4
IN2017	Computer Graphics	6
IN2021	Computer Aided Medical Procedures	6
IN2022	Computer Aided Medical Procedures II	5
IN2023	Bildverstehen I: Methoden der industriellen Bildverarbeitung	3
IN2030	Data Mining and Knowledge Discovery	3
IN2031	Einsatz und Realisierung von Datenbanksystemen	6
IN2041	Automata and Formal Languages	8
IN2060	Echtzeitsysteme	6

Modulnr.	Titel	СР
IN2061	Einführung in die digitale Signalverarbeitung	7
IN2062	Grundlagen der Künstlichen Intelligenz	5
IN2064	Machine Learning	8
IN2067	Robotics	6
IN2078	Grundlagen der Programm- und Systementwicklung	6
IN2124	Basic Mathematical Methods for Imaging and Visualization	5
IN2147	Parallel Programming	5
IN2189	Computer Architecture and Networks	3
IN2197	Kryptographie	5
IN2221	Protein Prediction	8
IN2222	Cognitive Systems	5
IN2230	Protein Prediction II for Bioinformaticians	8
IN2236	Virtuelle Physik: Moderne Modellierungstechnik und ihr Einsatz in der Computersimulation	4
IN2239	Algorithmic Game Theory	5
IN2286	Image Guided Surgery	6
IN2319	Computational Physiology for Medical Image Computing	6
IN2322	Protein Prediction I for Computer Scientists	8
IN2332	Statistical Modeling and Machine Learning	8
MA2409	Probability Theory	9
MA2504	Fundamentals of Convex Optimization	9
MA3001	Functional Analysis	9
MA3005	Partial Differential Equations	9
MA3205	Differential Geometry	9
MA3305	Numerical Programming 1 (CSE)	8
MA3306	Numerical Programming 2 (CSE)	8
MA3402	Computational Statistics	5
MA3601	Mathematische Modelle in der Biologie	9
MA3602	Spezielle Kapitel aus der Mathematischen Biologie	9
MA4064	Fourier Analysis	5
MA4304	Computational plasma physics	5
MA5120	Algebra 2	9
MA9976	Financial Econometrics (FIM)	4
ME0156	Bildgebende Verfahren, Nuklearmedizin	3
ME510	Immunologie	3
me551	Spezielle Immunologie	3
MW0006	Wärme- und Stoffübertragung	5
MW0007	Aerodynamik des Flugzeugs I	5
MW0017	Biokompatible Werkstoffe 2 und Interdisziplinäres Seminar	5
MW0056	Grundlagen Medizintechnik und Biokompatible Werkstoffe 1	5
MW0080	Mikrotechnische Sensoren/Aktoren	5
MW0090	Industrielle Software Entwicklung für Ingenieure	5
MW0101	Produktergonomie	5
MW0139	Werkstofftechnik	5
MW0142	Aerodynamik bodengebundener Fahrzeuge	3
MW0147	Anwendung strömungsmechanischer Berechnungsverfahren in Flugantrieben	3
MW0164	Energieoptimierung für Gebäude	3
MW0183	Instationäre Aerodynamik I	3

Modulnr.	Titel	СР
MW0196	Luft- und Raumfahrtmedizin	3
MW0207	Motorradtechnik	3
MW0253	Werkstoffe für Motoren und Antriebssysteme: Otto- und Dieselmotoren	3
MW0386	Seilbahntechnik	3
MW0415	Instationäre Aerodynamik II	3
MW0470	Numerische Berechnung turbulenter Strömungen	3
MW0510	Flugantriebe I und Gasturbinen	5
MW0538	Moderne Methoden der Regelungstechnik 1	5
MW0612	Finite Elemente	5
MW0620	Nichtlineare Finite-Element-Methoden	5
MW0685	Grundlagen der experimentellen Strömungsmechanik	3
MW0715	Trends in der Medizintechnik I	3
MW0799	Introduction to Nuclear Energy	5
MW0800	Trends und Entwicklungen in der Fahrzeugtechnik	3
MW0836	Navigation und Datenfusion	3
MW0850	Nichtlineare Kontinuumsmechanik	5
MW0866	Multibody Simulation	3
MW0884	Fundamentals of Nuclear Engineering	5
MW0887	Technologie und Entwicklung von Triebwerken der nächsten Generation	3
MW0888	Konstruktionsaspekte bei Flugantrieben	3
MW0892	Application of Radioactivity in Industry, Research and Medicine	5
MW0964	Fundamentals of Thermal-hydraulics in Nuclear Systems	5
MW0997	Aerodynamik von Hochleistungsfahrzeugen	3
MW1029	Ringvorlesung Bionik	3
MW1042	Lasertechnik	5
MW1112	Nuclear Fusion Reactor Engineering	3
MW1353	Radiation and Radiation-Protection	5
MW1384	Kohlenstoff und Graphit - Hochleistungswerkstoffe für Schlüsselindustrien	3
MW1402	Hubschrauber-Flugmechanik und -Flugregelung	3
MW1420	Advanced Control	5
MW1475	Renewable Energy Technology I	3
MW1476	Renewable Energy Technology II	3
MW1746	Advanced Parallel Computing and Solvers for Large Problems in Engineering	5
MW1790	Near Earth Objects (NEOs)	3
MW1814	Solarthermische Kraftwerke	5
MW1817	Biomechanik - Grundlagen und Modellbildung	5
MW1827	Mikroskopische Biomechanik	5
MW1828	Designprinzipien in Biomaterialien - die Natur als Ingenieur	3
MW1834	Grundlagen der Kälteerzeugung und Industrielle Tieftemperaturanlagen	3
MW1969	Desalination	5
MW1979	Introduction to Spacecraft Technology	4
MW1983	Spacecraft Technology	8
MW2075	Multifunktionelle polymerbasierte Komposite	3
MW2076	Auslegung von Elektrofahrzeugen	5
MW2119	Turbomaschinen	5
MW2120	Raumfahrtantriebe I	5
MW2132	Raumfahrzeugentwurf	5

Modulnr. T	Titel Titel	СР
MW2155	Bemannte Raumfahrt	5
MW2182	Orbit- und Flugmechanik	5
MW2217	Plasma-Material-Wechselwirkung	3
MW2238	Energetische Nutzung von Biomasse und Reststoffen	3
MW2248	Datenanalyse und Versuchsplanung	5
MW2280	Strom- und Wärmespeicher	3
PH2110	Ausgewählte Themen der Molekular- und Zellbiologie	5
PH2139	Grundlagen und Methoden der Biochemie und Molekularbiologie	5
PH2236	Grundlagen der molekularen Biologie für Physiker	3
WZ2051	Einführung in die Geologie und Gesteinskunde	3
WZ2457	Neurobiologie	3
WZ2458	Sinnesphysiologie	3
WZ3213	Molecular Oncology	5
WZ6318	Geologische Grundlagen der Naturräume Bayerns	5
WZ8088	Climate Change	6

4. Exemplarischer Katalog der Theoriemodule, beruhend auf dem Angebot des Studienjahres 2016/17. Der Katalog wird jährlich vom Prüfungsausschuss aktualisiert und bekanntgegeben.

Modulnr.	Titel	СР
PH1006	Theorie stochastischer Prozesse	10
PH1007	Kontinuumsmechanik	10

Ausgefertigt aufgrund des Beschlusses des Akademischen Senats der Technischen Universität München vom 6. Dezember 2017 sowie der Genehmigung durch den Präsidenten der Technischen Universität München vom 20. Februar 2018.

München, 20. Februar 2018 Technische Universität München

Wolfgang A. Herrmann Präsident

Diese Satzung wurde am 20. Februar 2018 in der Hochschule niedergelegt; die Niederlegung wurde am 20. Februar 2018 durch Anschlag in der Hochschule bekannt gemacht. Tag der Bekanntmachung ist daher der 20. Februar 2018.