Dritte Satzung zur Änderung der Fachprüfungs- und Studienordnung für den Masterstudiengang Produktion und Logistik an der Technischen Universität München

Vom 15. März 2013

Aufgrund von Art. 13 Abs. 1 Satz 2 in Verbindung mit Art. 58 Abs. 1 Satz 1, Art. 61 Abs. 2 Satz 1 sowie Art. 43 Abs. 5 des bayerischen Hochschulgesetzes (BayHSchG) erlässt die Technische Universität München folgende Änderungssatzung:

§ 1

Die Fachprüfungs- und Studienordnung für den Masterstudiengang Produktion und Logistik an der Technischen Universität München vom 26. Juni 2008, zuletzt geändert durch Satzung vom 13. Mai 2011, wird wie folgt geändert:

- 1. Das Inhaltsverzeichnis wird wie folgt geändert:
 - a) Nach "§ 37 Modularisierung, Modulprüfung, Lehrveranstaltungen, Studienrichtungen, Unterrichtssprache" wird "§ 37a Industriepraktikum" eingefügt.
 - b) Die Anlage 4 wird gestrichen.
- 2. § 35 Abs. 2 wird wie folgt geändert:
 - "(2) ¹Der Umfang der für die Erlangung des Mastergrades erforderlichen Lehrveranstaltungen im Wahlpflicht- und Wahlbereich beträgt 79 Credits (mindestens 48 Semesterwochenstunden), verteilt auf drei Semester. ²Hinzu kommen maximal sechs Monate für die Durchführung der Master's Thesis gemäß § 46 sowie 11 Credits für die Semesterarbeit. ³Der Umfang der zu erbringenden Studien- und Prüfungsleistungen im Wahlpflicht- und Wahlbereich gemäß Anlage 1 im Masterstudiengang Produktion und Logistik beträgt damit mindestens 120 Credits. ⁴Die Regelstudienzeit für das Masterstudium beträgt insgesamt vier Semester. ⁵Sofern im Erststudium nicht eine mindestens achtwöchige Industriepraxis nachgewiesen wurde, sind im Masterstudium zusätzlich acht Wochen Industriepraxis abzuleisten."

- § 36 wird wie folgt geändert:
 - a) Abs. 1 wird wie folgt geändert:
 - aa) Nr. 1 Buchst. a) erhält folgende Fassung:
 - "a) einen an der inländischen Universität erworbenen qualifizierten Bachelorabschluss im Studiengang Maschinenwesen oder vergleichbaren Studiengängen oder"
 - bb) Nr. 3 erhält folgende Fassung:
 - "3. den Nachweis einer Industriepraxis im Umfang von mindestens acht Wochen. Kann diese nicht nachgewiesen werden, gilt § 35 Abs. 2 Satz 5."
 - b) Abs. 2 erhält folgende Fassung:
 - "(2) Ein im Sinne von Abs. 1 qualifizierter Hochschulabschluss liegt vor, wenn dieser die Ablegung von Prüfungsleistungen umfasst, die Prüfungsleistungen in dem wissenschaftlich orientierten einschlägigen, in Abs. 1 Nr. 1 genannten Bachelorstudiengang Maschinenwesen der Technischen Universität München gleichwertig sind und die den fachlichen Anforderungen des Masterstudienganges Fahrzeug- und Motorentechnik entsprechen."
 - c) Abs. 3 erhält folgende Fassung:
 - "(3) Zur Feststellung nach Abs. 2 wird im Rahmen der ersten Stufe des Eignungsverfahrens der Modulkatalog des Bachelorstudienganges Maschinenwesen herangezogen."
- 4. In § 37 erhalten die Abs. 2 und 3 folgende Fassung:
 - "(2) Der Studienplan ist in Anlage 3 aufgeführt.
 - (3) ¹Im Rahmen des Masterstudiums wählt der Studierende aus maximal drei Wahlpflichtbereichen sein Studienprogramm aus, indem er mindestens 60 Credits gemäß den Vorgaben in Anlage 1 nachweist. ²Es sind als Studienleistung Wahlmodule im Umfang von 9 Credits aus dem Bereich "Ergänzungen" nachzuweisen und mindestens 2 Credits als Studienleistungen aus dem Bereich "Soft Skills" zu erbringen. ³Daneben sind aus dem Katalog "Hochschulpraktika" 8 Credits nachzuweisen, welche Studienleistungen darstellen. ⁴Ferner muss eine Semesterarbeit im Umfang von 11 Credits angefertigt werden. ⁵Im vierten Semester soll im Modul Master's Thesis neben der Erstellung der Wissenschaftlichen Ausarbeitung (Thesis) parallel die Studienleistung "Anleitung zum Wissenschaftlichen Arbeiten" nachgewiesen werden."
- 5. § 40 wird wie folgt geändert:

Abs. 2 und 3 werden aufgehoben, die Absatzbezeichnung im bisherigen Abs. 1 entfällt.

- 6. § 42 wird wie folgt geändert:
 - a) Abs. 2 erhält folgende Fassung:
 - "(2) ¹Die Anmeldung zu einer Modulprüfung im Pflicht-, Wahlpflicht- und Wahlbereich regelt § 15 Abs. 1 APSO. ²Die Anmeldung zu einer entsprechenden Wiederholungsprüfung in einem nicht bestandenen Pflicht-/Wahlpflichtmodul regelt § 15 Abs. 2 APSO."
 - b) Abs. 3 wird aufgehoben.
- 7. § 43 wird wie folgt geändert:
 - a) Abs. 2 erhält folgende Fassung:
 - "(2) ¹Die Modulprüfungen sind in der Anlage 1 aufgelistet. ²Es sind mindestens 60 Credits in den Wahlpflichtmodulen nachzuweisen. ³Bei der Wahl der Module ist § 8 Abs. 2 APSO zu beachten."
 - b) Abs. 3 wird aufgehoben.
- 8. § 45 erhält folgende Fassung:

"§ 45 Studienleistungen

Neben den in § 43 Abs. 1 genannten Modulprüfungen ist die erfolgreiche Ablegung von Studienleistungen in den Modulen gemäß Anlage 1 im Umfang von 22 Credits nachzuweisen."

9. § 45a erhält folgende Fassung:

"§ 45a Multiple-Choice-Verfahren

Die Durchführung von Multiple-Choice-Verfahren ist in § 12a APSO geregelt."

- 10. § 46 wird wie folgt geändert:
 - a) In Abs. 1 werden folgende Sätze 2 und 3 angefügt:

"²Die Master's Thesis kann von jedem fachkundigen Prüfenden der Fakultät Maschinenwesen der Technischen Universität München ausgegeben und betreut werden (Themensteller). ³Fachkundig Prüfende sind die Hochschullehrer der Fakultät, Junior-Fellows der Fakultät sowie Lehrbeauftragte oder Hochschullehrer anderer Fakultäten, die in dem Studiengang Produktion und Logistik lehren."

- b) Abs. 2 erhält folgende Fassung:
 - "(2) ¹Zur Master's Thesis wird zugelassen, wer den Nachweis über
 - 1. die Modulprüfungen gemäß § 43 Abs. 1 Nr. 1,
 - 2. die Hochschulpraktika,
 - 3. die Ergänzungen,
 - 4. die Soft-Skills und
 - 5. eine Semesterarbeit erfolgreich erbracht hat.

²Abweichend von Satz 1 kann ein Studierender vorzeitig zur Master's Thesis zugelassen werden, wenn er mindestens 80 Credits erreicht hat."

c) Abs. 3 Satz 2 erhält folgende Fassung:

"²Für das Modul Master's Thesis werden 30 Credits vergeben."

- d) Es wird folgender Abs. 5 angefügt:
 - "(5) ¹Falls die Thesis im Modul Master's Thesis nicht mit mindestens "ausreichend" (4,0) bewertet wurde, so kann sie einmal mit neuem Thema wiederholt werden. ²Sie muss spätestens sechs Wochen nach dem Bescheid über das Ergebnis erneut angemeldet werden."
- 11. § 48 Abs. 2 erhält folgende Fassung:
 - "(2) Als Datum des Zeugnisses ist der Tag anzugeben, an dem alle Prüfungs- und Studienleistungen erfüllt sind."
- 12. Die "Anlage 1 Prüfungsmodule" wird durch die als Anlage beigefügte "Anlage 1 Prüfungsmodule" ersetzt.
- 13. Die "Anlage 2 Eignungsverfahren" wird durch die als Anlage beigefügte "Anlage 2 Eignungsverfahren" ersetzt.
- 14. Die Anlage 3 wird durch die beigefügte "Anlage 3 Studienplan" ersetzt.
- 15. Die Anlage 4 wird aufgehoben.

- (1) Diese Satzung tritt am 1. April 2013 in Kraft.
- (2) Sie gilt für alle Studierenden, die ab dem Wintersemester 2013/2014 ihr Fachstudium an der Technischen Universität München aufnehmen.

Anlage 1 : Prüfungsmodule

Es sind insgesamt mindestens 60 Credits aus den drei angebotenen Wahlpflichtbereichen nachzuweisen.

Nr.	Modulbezeichnung	Lehrform	Zulassungs-	Sem.	SWS	Credits	Prüfungs-	Prüfungs-	Unterrichts-
		SWS	voraussetzg					dauer in	
		3003	(§ 43 Abs. 1)				art	Minuten	sprache
		VÜΡ							

Wahlpflichtbereich 1: "Kernkompetenzen in Produktion und Logistik": Aus folgender Liste sind mindestens 30 Credits zu erbringen.

1	Fabrikplanung	V/Ü	Nein	SS	3	5	S	90	Deutsch
2	Förder- und Materialflusstechnik	V/Ü	Nein	SS	3	5	S	90	Deutsch
3	Fügetechnik	V/Ü	Nein	SS	3	5	S	90	Deutsch
4	Gießereitechnik und Rapid Prototyping	V/Ü	Nein	SS	3	5	S	90	Deutsch
5	Lasertechnik	V/Ü	Nein	WS	3	5	S	90	Deutsch
6	Maschinensystemtechnik	V/Ü	Nein	WS	3	5	S	90	Deutsch
7	Montage, Handhabung und Industrieroboter	V/Ü	Nein	WS	3	5	S	90	Deutsch
8	Numerische Methoden für Umformtechnik und Gießereiwesen	V/Ü	Nein	SS	3	5	S	90	Deutsch
9	Planung technischer Logistiksysteme	V/Ü	Nein	SS	3	5	S	90	Deutsch

10	Qualitätsmanagement	V/Ü	Nein	WS	3	5	S	90	Deutsch
11	Rechnerintegrierte Produktion	V/Ü	Nein	SS	3	5	S	90	Deutsch
12	Spanende Werkzeugmaschinen	V/Ü	Nein	WS	3	5	S	90	Deutsch
13	Umformende Werkzeugmaschinen	V/Ü	Nein	SS	3	5	S	90	Deutsch

Wahlpflichtbereich 2 "Schwerpunktmodule": Hier sind Module im Umfang von maximal 30 Credits auszuwählen.

1	Antriebssystemtechnik für Fahrzeuge	V/Ü	Nein	WS	3	5	S	90	Deutsch
2	Arbeitswissenschaft	V/Ü	Nein	WS	3	5	S	90	Deutsch
3	Automatisierungstechnik 2	V/Ü	Nein	SS	3	5	S	90	Deutsch
4	Faser-, Matrix-, und Verbundwerkstoffe mit ihren Eigenschaften	V/Ü	Nein	WS	3	5	S	90	Deutsch
5	Faserverbundwerkstoffe	V/Ü	Nein	WS	3	5	S	90	Deutsch
6	Fertigungsverfahren für Composite-Bauteile	V/Ü	Nein	SS	3	5	S	90	Deutsch
7	Finite Elemente	V/Ü	Nein	WS	3	5	S	90	Deutsch
8	Finite Elemente in der Werkstoffmechanik	V/Ü	Nein	SS	3	5	S	90	Deutsch
9	Grundlagen der Mehrphasenströmungen	V/Ü	Nein	WS	3	5	S	90	Deutsch
10	Kunststoffe und Kunststofftechnik 1	V/Ü	Nein	WS	3	5	S	90	Deutsch

11	Kunststoffe und Kunststofftechnik 2	V/Ü	Nein	SS	3	5	S	90	Deutsch
12	Mechatronische Gerätetechnik (Feingerätebau)	V/Ü	Nein	WS	3	5	S	90	Deutsch
13	Menschliche Zuverlässigkeit	V/Ü	Nein	SS	3	5	S	90	Deutsch
14	Methoden der Produktentwicklung	V/Ü	Nein	WS	3	5	S	90	Deutsch
15	Moderne Methoden in der Regelungstechnik 1	V/Ü	Nein	SS	3	5	S	90	Deutsch
16	Nichtlineare Finite-Element-Methoden	V/Ü	Nein	SS	3	5	S	90	Deutsch
17	Nichtlineare Kontinuumsmechanik	V/Ü	Nein	WS	3	5	S	90	Deutsch
18	Oberflächentechnologie	V/Ü	Nein	SS	3	5	S	90	Deutsch
19	Produktergonomie	V/Ü	Nein	SS	3	5	S	90	Deutsch
20	Produktionsergonomie	V/Ü	Nein	WS	3	5	S	90	Deutsch
21	Prozess- und Anlagentechnik	V/Ü	Nein	SS	3	5	S	90	Deutsch
22	Prozesstechnik und Umweltschutz in modernen Kraftwerken	V/Ü	Nein	WS	3	5	S	90	Deutsch
23	Software-Ergonomie	V/Ü	Nein	WS	3	5	S	90	Deutsch
24	Technische Dynamik	V/ü	Nein	WS	3	5	S	90	Deutsch
25	Wärme- und Stoffübertragung	V/Ü	Nein	WS	3	5	S	90	Deutsch
26	Werkstofftechnik	V/Ü	Nein	SS	3	5	S	90	Deutsch

Wahlpflichtbereich 3 "Studiengangübergreifende Module": ": Es dürfen maximal 10 Credits daraus gewählt werden.

Nr.	Modulbezeichnung	Lehrform SWS V Ü P	Zulassungs- voraussetzung (§ 43 Abs. 1)	Sem.	SWS	Credits	Prüfungs- art	Prüfungs- dauer in Minuten	Unterrichts- sprache
1	Adaptiv – Bionische Lösungsprinzipien für Gebäudehüllen	V/Ü	Nein	SS	3	5	S	90	Deutsch
2	Adaptive Strukturen	V/Ü	Nein	WS	3	5	S	90	Deutsch
3	Advanced Parallel Computing and Solvers for large problems in Engineering	V/Ü	Nein	SS	3	5	S	90	Deutsch
4	Aeroakustik	V/Ü	Nein	WS	3	5	S	90	Deutsch
5	Aerodynamik des Flugzeugs I	V/Ü	Nein	WS	3	5	S	90	Deutsch
6	Aerodynamik des Flugzeugs II	V/Ü	Nein	SS	3	5	S	90	Deutsch
7	Aerodynamische Auslegung von Turbomaschinen	V/Ü	Nein	SS	3	5	S	90	Deutsch
8	Angewandte CFD	V/Ü	Nein	SS	3	5	S	90	Deutsch
9	Angewandte Physik: Polymerphysik I	V/Ü	Nein	WS	3	5	М	25	Englisch

10	Applikation von Radioaktivität in Industrie, Forschung und Medizin	V/Ü	Nein	SS	3	5	S	90	Englisch
11	Auslegung thermischer Apparate	V/Ü	Nein	SS	3	5	S	90	Deutsch
12	Auslegung und Bauweisen von Composite Strukturen	V/Ü	Nein	WS	3	5	S	90	Deutsch
13	Auslegung und Entwurf von Hubschraubern I	V/Ü	Nein	WS	3	5	S	90	Deutsch
14	Auslegung und Entwurf von Hubschraubern II	V/Ü	Nein	SS	3	5	S	90	Deutsch
15	Auslegung, Herst. u. Prüfung med. Implantate	V/Ü	Nein	WS	2	5	S	60	Deutsch
16	Auslegung von Elektrofahrzeugen	V/Ü	Nein	SS	3	5	S	90	Deutsch
17	Automatisierungstechnik in der Medizin	V/Ü	Nein	SS	3	5	S	90	Deutsch
18	Bemannte Raumfahrt	V/Ü	Nein	WS	3	5	S	90	Deutsch
19	Berufsbildungs- und Arbeitsrecht	V/Ü	Nein	WS/SS	3	5	S	90	Deutsch
20	Betrieb und Auslegung chemischer Reaktoren	V/Ü	Nein	SS	3	5	S	90	Deutsch
21	Bewegungssteuerung durch geregelte elektrische Antriebe	V/Ü	Nein	WS	3	3	S	60	Deutsch

22	Bewegungstechnik	V/Ü	Nein	SS	3	5	S	90	Deutsch
23	Biofluid Mechanics	V/Ü	Nein	SS	3	5	S	90	Deutsch
24	Biokomp. Werkstoffe 2 u. Interdisz. Seminar	V/Ü	Nein	SS	3	5	М	60	Deutsch
25	Biomechanik - Grundlagen und Modellbildung	V/Ü	Nein	SS	3	5	S	90	Deutsch
26	Biomedical Engineering 1	V/Ü	Nein	WS	3	5	S	90	Deutsch
27	Bioproduktaufarbeitung 1	V/Ü	Nein	WS	3	5	S	90	Deutsch
28	Bioprozesse	V/Ü	Nein	SS	3	5	S	90	Deutsch
29	Bioreaktoren	V/Ü	Nein	WS	3	5	S	90	Deutsch
30	Chemische Reaktortechnik	V/Ü	Nein	SS	3	5	S	90	Deutsch
31	Computational Intelligence	V/Ü	Nein	WS	3	5	S	90	Deutsch
32	Controlling	V/Ü	Nein	WS	2	3	S	60	Deutsch
33	Corporate Finance	V/Ü	Nein	SS	4	6	S	120	Deutsch

34	Desalination	V/Ü	Nein	WS	3	5	S	90	Deutsch
35	Dynamik der Straßenfahrzeuge	V/Ü	Nein	SS	3	5	S	90	Deutsch
36	Dynamische Systeme (vormals: Regelungs- und Steuerungstechnik II)	V/Ü	Nein	WS	4	6	S	90	Deutsch
37	Echtzeitsysteme	V/Ü	Nein	WS	3	6	S	90	Deutsch
38	Einführung in die Kernenergie	V/Ü	Nein	WS	3	5	S	90	Englisch
39	Elektrische Aktoren und Sensoren in geregelten Antrieben	V/Ü	Nein	WS	4	3	S	90	Deutsch
40	Energetische Nutzung von Biomasse und Reststoffen	V/Ü	Nein	SS	3	5	S	90	Deutsch
41	Energiesysteme II	V/Ü	Nein	SS	3	5	S	90	Deutsch
42	Entwicklung intelligenter verteilter eingebetteter Systeme in der Mechatronik	V/Ü	Nein	SS	3	5	S	90	Deutsch
43	Entwicklung von Flugregelungssystemen	V/Ü	Nein	WS	3	5	М	25	Deutsch
44	Entwicklungsmanagement	V/Ü	Nein	WS	3	5	S	90	Deutsch
45	Experimentalphysik III	V/Ü	Nein	WS	6	8	S	90	Deutsch

46	Experimentelle Schwingungsanalyse	V/Ü	Nein	WS	3	5	S	90	Deutsch
47	Experimentelle Techniken zur Charakterisierung von Biomaterialien	V/Ü	Nein	WS	3	5	S	90	Deutsch
48	Fahrzeugkonzepte: Entwicklung und Simulation	V/Ü	Nein	WS	3	5	S	90	Deutsch
49	Finite Elemente in der Fluidmechanik	V/Ü	Nein	SS	3	5	S	90	Deutsch
50	Flugantriebe I und Gasturbinen	V/Ü	Nein	WS	3	5	S	90	Deutsch
51	Flugantriebe II	V/Ü	Nein	SS	3	5	S	90	Deutsch
52	Flugphysik der Hubschrauber I	V/Ü	Nein	WS	3	5	S	90	Deutsch
53	Flugphysik der Hubschrauber II	V/Ü	Nein	SS	3	5	S	90	Deutsch
54	Flugregelung I	V/Ü	Nein	WS	3	5	S	90	Deutsch
55	Flugregelung II	V/Ü	Nein	SS	3	5	S	90	Deutsch
56	Flugsystemdynamik I	V/Ü	Nein	WS	3	5	S	90	Deutsch
57	Flugsystemdynamik II	V/Ü	Nein	SS	3	5	S	90	Deutsch

58	Flugzeugentwurf	V/Ü	Nein	SS	3	5	S	90	Deutsch
59	Fundamentals of Aircraft Operations	V/Ü	Nein	SS	3	5	S	90	Englisch
60	Gasdynamik	V/Ü	Nein	SS	3	5	S	90	Deutsch
61	Gesellschaftsrecht/Arbeitsrecht	V/Ü	Nein	SS	4	5	S	60	Deutsch
62	Grenzflächen und Partikeltechnologie	V/Ü	Nein	SS	3	5	S	90	Deutsch
63	Grenzschichttheorie	V/Ü	Nein	WS	3	5	S	90	Deutsch
64	Grundlagen der Biophysik	V/Ü	Nein	WS	4	5	М	25	Deutsch
65	Grundlagen der modernen Flugführung	V/Ü	Nein	WS	3	5	S	90	Englisch
66	Grundlagen der Nukleartechnik	V/Ü	Nein	SS	3	5	S	90	Englisch
67	Grundlagen der Thermal-Hydraulik in Nuklearsystemen	V/Ü	Nein	WS	3	5	S	90	Englisch
68	Grundlagen elektrischer Maschinen	V/Ü	Nein	WS	3	3	S	90	Deutsch
69	Grundlagen Medizintechnik: Biokompatible Werkstoffe 1	V/Ü	Nein	WS	3	5	М	60	Deutsch

70	Kommunikationssysteme in der Automatisierung	V/Ü	Nein	WS	3	5	S	90	Deutsch
71	Komplexitätsmanagement für die industrielle Praxis	V/Ü	Nein	SS	3	5	S	90	Deutsch
72	Kostenmanagement in der Produktentwicklung	V/Ü	Nein	WS	3	5	S	90	Deutsch
73	Luft- und Raumfahrtstrukturen	V/Ü	Nein	SS	3	5	S	90	Deutsch
74	Management Science und Produktionsmanagement	V/Ü	Nein	WS	2	6	S	120	Deutsch
75	Marketing und Innovation	V/Ü	Nein	SS	4	6	S	120	Deutsch
76	Messsystem- und Sensortechnik	V/Ü	Nein	SS	3	5	S	120	Deutsch
77	Methoden in der Motorapplikation	V/Ü	Nein	WS	3	5	S	90	Deutsch
78	Mikroelektronik in der Mechatronik	V/Ü	Nein	SS	3	6	S	60	Deutsch
79	Mikroskopische Biomechanik	V/Ü	Nein	SS	3	5	S	90	Deutsch
80	Mikrotechnische Sensoren/Aktoren	V/Ü	Nein	WS/SS	3	5	S	90	Deutsch
81	Modellierung mikrostrukturierter Bauelemente und Systeme 1	V/Ü	Nein	WS	3	3	S	90	Deutsch

82	Modellierung mikrostrukturierter Bauelemente und Systeme 2	V/Ü	Nein	SS	3	3	S	90	Deutsch
83	Modellierung zellulärer Systeme	V/Ü	Nein	WS	3	5	S	90	Deutsch
84	Moderne Methoden in der Regelungstechnik 2	V/Ü	Nein	WS	3	5	S	90	Deutsch
85	Moderne Methoden in der Regelungstechnik 3	V/Ü	Nein	SS	3	5	S	90	Deutsch
86	Motormechanik	V/Ü	Nein	SS	3	5	S	90	Deutsch
87	Motorthermodynamik und Brennverfahren	V/Ü	Nein	SS	3	5	S	90	Deutsch
88	Multidisciplinary Design Optimization	V/Ü	Nein	SS	3	5	S	90	Deutsch
89	Neuroprothetik	V/Ü	Nein	WS/SS	3	6	S	30	Deutsch
90	Objektorientierte Modellierung mechatronischer Systeme	V/Ü	Nein	WS	2	3	S	60	Deutsch
91	Optimierungsverfahren in der Automatisierungstechnik	V/Ü	Nein	SS	3	6	S	75	Deutsch
92	Optomechatronische Messsysteme	V/Ü	Nein	WS	3	6	S	60	Deutsch
93	Orbit- und Flugmechanik	V/Ü	Nein	SS	3	5	S	90	Deutsch

94	Organisation und Personalmanagement	V/Ü	Nein	SS	4	6	S	120	Deutsch
95	Parallele Programmierung und Hochleistungsrechnen	V/Ü	Nein	SS	3	4	S	90	Deutsch
96	Physical Electronics	V/Ü	Nein	SS	3	3	S	60	Deutsch
97	Physiologie	V/Ü	Nein	SS	3	5	S	90	Deutsch
98	Planung thermischer Prozesse	V/Ü	Nein	WS/SS	3	5	M	30	Deutsch
99	Projektorganisation und Management in der Software Entwicklung	V/Ü	Nein	SS	4	5	S	75-125	Deutsch/ Englisch
100	Prozesssimulation und Materialmodellierung von Composites	V/Ü	Nein	SS	3	5	S	90	Deutsch
101	Raumfahrtantriebe 1	V/Ü	Nein	SS	3	5	S	90	Deutsch
102	Raumfahrtantriebe 2	V/Ü	Nein	WS	3	5	S	90	Deutsch
103	Raumfahrzeugentwurf	V/Ü	Nein	SS	3	5	S	90	Deutsch
104	Reaktionsthermodynamische Grundlagen für Energiesysteme	V/Ü	Nein	WS	3	5	S	90	Deutsch
105	Reaktorphysik 1 und Anwendungen der Kerntechnik	V/Ü	Nein	WS	4	5	M	25	Deutsch

106	Reaktorphysik 2 und neue Konzepte in der	V/Ü	Nein	SS	4	5	М	25	Deutsch
	Kerntechnik								
107	Roboterdynamik	V/Ü	Nein	SS	3	5	S	90	Deutsch
108	Robotik	V/Ü	Nein	WS	5	6	S/M	90/20	Englisch
109	Satellite Navigation I (SatNav)	V/Ü	Nein	WS	4	6	S	90	Deutsch
110	Simulation in SIMULINK/MATLAB	V/Ü	Nein	WS	3	5	S	90	Deutsch
111	Software Engineering 1 (Software Technik 1)	V/Ü	Nein	WS	5	6	S	90-150	Deutsch/ Englisch
112	Softwareentwicklung für Ingenieure 2	V/Ü	Nein	WS	3	5	S	90	Deutsch
113	Solarthermische Kraftwerke	V/Ü	Nein	SS	3	5	S	90	Deutsch
114	Sonderkapitel Maschinenelemente - Wälzpaarungen	V/Ü	Nein	WS/SS	3	5	S	90	Deutsch
115	Strahlung und Strahlenschutz	V/Ü	Nein	WS	3	5	S	90	Deutsch
116	Synchronisierungen und Lamellenkupplungen	V/Ü	Nein	WS/SS	3	5	S	90	Deutsch
117	Systems Engineering	V/Ü	Nein	SS	3	5	S	90	Deutsch

118	Thermische Turbomaschinen	V/Ü	Nein	WS	3	5	S	90	Deutsch
119	Thermische Verfahrenstechnik II	V/Ü	Nein	WS	3	5	S	90	Deutsch
120	Turbulente Strömungen	V/Ü	Nein	SS	3	5	S	90	Deutsch
121	Umwelt-Bioverfahrenstechnik	V/Ü	Nein	SS	3	5	S	90	Deutsch
122	Verbrennung	V/Ü	Nein	SS	3	5	S	90	Deutsch
123	Vernetzte Regelungssysteme	V/Ü	Nein	SS	3	5	S	75	Deutsch
124	Volkswirtschaftslehre I	V/Ü	Nein	WS	2	5	S	120	Deutsch
125	Wirtschaftsprivatrecht I (Grundlagenrecht)	V/Ü	Nein	WS	4	6	S	120	Deutsch
126	Zulassung von Medizingeräten	V/Ü	Nein	WS	3	5	S	90	Deutsch

Wahlmodule "Ergänzungen": Aus folgender Liste sind **9 Credits** als Studienleistung zu erbringen. Diese Liste hat nur Beispielcharakter. Die vollständige und aktualisierte Liste ist jeweils sechs Wochen vor Vorlesungsbeginn im Internet unter www.mw.tum.de in der Rubrik "Studium", am Aushang des Masterprüfungsausschusses bzw. in TUMonline einzusehen.

1	Baumaschinen	V	Nein	2	3	S	60	Deutsch
2	Dampfturbinen	V	Nein	2	3	S	60	Deutsch
3	Einspritztechnik für Verbrennungskraftmaschinen	V	Nein	2	3	S	60	Deutsch
4	Instationäre Aerodynamik II	V	Nein	2	3	S	60	Deutsch
5								

Wahlmodule "Hochschulpraktika": Aus folgender Liste sind **8 Credits** als Studienleistungen zu erbringen. Diese Liste hat nur Beispielcharakter. Die vollständige und aktualisierte Liste ist jeweils sechs Wochen vor Vorlesungsbeginn im Internet unter www.mw.tum.de in der Rubrik "Studium", am Aushang des Masterprüfungsausschusses bzw. in TUMonline einzusehen. Zur Prüfungsdauer können keine expliziten Angaben gemacht werden, da bei Praktika in der Regel mündliche Fragen zu den Versuchen sowie schriftliche Ausarbeitungen der durchgeführten Versuche eine reguläre Prüfung ersetzen.

1	CAD im Flugzeugbau	Р	Nein	4	4	D
2	Flugführung	Р	Nein	4	4	D
3	Logistik	Р	Nein	4	4	D
4	Flugverkehrsszenarien	Р	Nein	4	4	D
5						

Wahlpflichtmodul Semesterarbeit (11 Credits):

Die Semesterarbeit im Umfang von **11 Credits** wird von einem Hochschullehrer der Fakultät für Maschinenwesen der Technischen Universität München als fachkundigem Prüfenden im Sinne der APSO ausgegeben und betreut (Themensteller).

Bereich "Soft Skills": Es ist ein Modul mit insgesamt mindestens 2 Credits als Studienleistung zu erbringen.

Die ausgewählte Veranstaltungsart muss einen Seminar-/ Workshopcharakter aufweisen (Gruppengröße max. 20 Teilnehmer) und aktivierende Lehr-/und Lernmethoden beinhalten. Das Ziel der Studienleistung ist es, die soziale, persönliche und methodischen Kompetenzen der Studierenden zu stärken bzw. zu erweitern. Die konzeptionelle Grundlage besteht darin, Fachwissen mit sozialen Kompetenzen durch Projektarbeit im Team zu verknüpfen. Diese Veranstaltungen sind aus dem Angebot der Fakultät für Maschinenwesen (Zentrum für Sozialkompetenz- und Managementtrainings www.zsk.mw.tum.de) auszuwählen.

Master's Thesis:

"Wissenschaftliche Ausarbeitung (Thesis)" und "Anleitung zum Wissenschaftlichen Arbeiten"

Innerhalb des Moduls Master's Thesis im Gesamtumfang von **30 Credits** hat der Studierende neben der Erstellung der "wissenschaftlichen Ausarbeitung (Thesis)" die Studienleistung "Anleitung zum Wissenschaftlichen Arbeiten" nachzuweisen. Neben einer zentralen Veranstaltung, welche vom Zentrum für Sozialkompetenz- und Managementtrainings angeboten wird, werden die Teilnehmer weiter von den jeweiligen Lehrstühlen betreut, an welchen sie ihre Thesis zeitgleich anfertigen. Das Modul Master's Thesis ist erst bestanden, wenn die Thesis mit "mindestens ausreichend" bewertet wurde und die Studienleistung "Anleitung zum Wissenschaftlichen Arbeiten" mit Erfolg abgelegt wurde.

Der Prüfungsausschuss aktualisiert fortlaufend den Fächerkatalog der Wahlpflicht- und Wahlmodule. Änderungen werden spätestens sechs Wochen vor Beginn der Vorlesungen auf den Internetseiten des Prüfungsausschusses bekannt gegeben.

Erläuterungen:

Sem. = Semester; SWS = Semesterwochenstunden; V = Vorlesung; Ü = Übung; P = Praktikum.

In der Spalte Prüfungsdauer ist bei schriftlichen Prüfungen die Prüfungsdauer in Minuten aufgeführt. Bei mündlichen Prüfungen ist dort "M" eingetragen.

ANLAGE 2: Eignungsverfahren

Eignungsverfahren für den Masterstudiengang Produktion und Logistik an der Technischen Universität München

1. Zweck des Verfahrens

¹Die Qualifikation für den Masterstudiengang Produktion und Logistik setzt neben den Voraussetzungen des § 36 Abs. 1 Nrn. 1 und 3 den Nachweis der Eignung gemäß § 36 Abs. 1 Nr. 2 nach Maßgabe der folgenden Regelungen voraus. ²Die besonderen Qualifikationen und Fähigkeiten der Bewerber sollen dem Berufsfeld eines Ingenieurs der angestrebten Ausrichtung entsprechen. ³Einzelne Eignungsparameter sind:

- 1.1 vorhandene Fachkenntnisse aus dem Erststudium auf dem Gebiet des Maschinenbaus in Anlehnung an den Bachelorstudiengang Maschinenwesen der Technischen Universität München,
- 1.2 Fähigkeit zu wissenschaftlicher bzw. grundlagen- und methodenorientierter Arbeitsweise.

2. Verfahren zur Prüfung der Eignung

- 2.1 Das Verfahren zur Prüfung der Eignung wird halbjährlich durch die Fakultät für Maschinenwesen durchgeführt.
- 2.2 Der Antrag auf Zulassung zum Verfahren ist zusammen mit den Unterlagen nach 2.3.1 bis einschließlich 2.3.4 für das Wintersemester bis zum 31. Mai und für das Sommersemester bis zum 31. Dezember an die Technische Universität München zu stellen (Ausschlussfristen).
- 2.3 Dem Antrag sind beizufügen:
 - 2.3.1 a) ein Nachweis über einen Hochschulabschluss gemäß § 36 einschließlich eines vollständigen Nachweises aller Studien- und Prüfungsleistungen im Erststudium (Transcript of Records) in amtlich beglaubigter Kopie; einer Beglaubigung bedarf es nicht, wenn die Prüfungen an der Technischen Universität München abgelegt wurden,
 - b) liegt der Hochschulabschluss gemäß § 36 zum Zeitpunkt der Antragstellung noch nicht vor, muss ein vollständiger, vom Prüfungsamt bestätigter Nachweis aller bisher erbrachten Studien- und Prüfungsleistungen im Erststudium (z.B. Leistungsnachweis) vorgelegt werden; einer Beglaubigung bedarf es nicht, wenn die Prüfungen an der Technischen Universität München abgelegt wurden; daneben ist ein begründeter Antrag auf vorzeitige Zulassung unter Berücksichtigung von § 36 Abs. 5 beizufügen,
 - 2.3.2 ein tabellarischer Lebenslauf,
 - 2.3.3 das dem Hochschulabschluss zugrunde liegende Curriculum, aus dem die jeweiligen Modulinhalte und die vermittelten Kompetenzen hervorgehen müssen (z. B. Modulhandbuch, Modulbeschreibungen), sowie das von der Fakultät für Maschinenwesen vorgegebene Formular, in dem der Bewerber die Noten, Creditpunkte sowie Semesterwochenstunden der Prüfungsleistungen aus den Grundlagengebieten Mathematik, Technische Mechanik, Maschinenelemente, Werkstoffkunde, Thermodynamik, Fluidmechanik und Wärmetransportphänomene zusammenstellt,

- 2.3.4 eine schriftliche Begründung von maximal 2 DIN-A4 Seiten für die Wahl des Masterstudiengangs Produktion und Logistik an der Technischen Universität München, in der der Bewerber darlegt, aufgrund welcher spezifischer Begabungen und Interessen er sich für den angestrebten Studiengang besonders geeignet hält; die besondere Leistungsbereitschaft ist beispielsweise durch Ausführungen zu studiengangspezifischen Berufsausbildungen, Praktika, Auslandsaufenthalten oder über eine erfolgte fachgebundene Weiterbildung im Bachelorstudium, die über Präsenzzeiten und Pflichtveranstaltungen hinaus gegangen ist, zu begründen; dies ist ggf. durch Anlagen zu belegen.
- 2.4 Bewerber, die den Bachelorabschluss an der Fakultät für Maschinenwesen der Technischen Universität München erworben haben, müssen dem Antrag die Unterlagen nach Nr. 2.3.3 nicht beifügen.

3. Kommission zum Eignungsverfahren

- 3.1 ¹Das Eignungsverfahren wird von einer Kommission durchgeführt, der in der Regel der für den Masterstudiengang Produktion und Logistik zuständige Studiendekan, mindestens zwei Hochschullehrer und mindestens ein wissenschaftlicher Mitarbeiter angehören. ²Mindestens die Hälfte der Kommissionsmitglieder müssen Hochschullehrer sein. ³Ein studentischer Vertreter wirkt in der Kommission beratend mit.
- 3.2 ¹Die Bestellung der Mitglieder erfolgt durch den Fakultätsrat im Benehmen mit dem Studiendekan. ²Mindestens ein Hochschullehrer wird als stellvertretendes Mitglied der Kommission bestellt. ³Den Vorsitz der Kommission führt in der Regel der Studiendekan. ⁴Für den Geschäftsgang gilt Art. 41 BayHSchG in der jeweils geltenden Fassung.

4. Zulassung zum Eignungsverfahren

- 4.1 Die Zulassung zum Eignungsverfahren setzt voraus, dass die in Nr. 2.3 genannten Unterlagen fristgerecht und vollständig vorliegen.
- 4.2 Mit den Bewerbern, die die erforderlichen Voraussetzungen erfüllen, wird das Eignungsverfahren gemäß Nr. 5 durchgeführt.
- 4.3 ¹Bewerber, die nicht zugelassen werden, erhalten einen mit Gründen und Rechtsbehelfsbelehrung versehenen Ablehnungsbescheid. ²Der Bescheid ist von der Leitung der Hochschule zu unterzeichnen. ³Die Unterschriftsbefugnis kann delegiert werden.

5. Durchführung des Eignungsverfahrens

- 5.1 Erste Stufe der Durchführung des Eignungsverfahrens
 - 5.1.1. ¹Die Kommission beurteilt anhand der gemäß Nr. 2.3 geforderten schriftlichen Bewerbungsunterlagen, ob ein Bewerber die Eignung zum Studium gemäß Nr. 1 besitzt (erste Stufe der Durchführung des Eignungsverfahrens). ²Die Kommission hat die eingereichten Unterlagen auf einer Skala von 0 bis 100 Punkten zu bewerten, wobei 0 das schlechteste und 100 das beste zu erzielende Ergebnis ist.

³Folgende Bewertungskriterien gehen ein:

1. Fachliche Qualifikation

¹Die curriculare Analyse erfolgt dabei nicht durch schematischen Abgleich der Module, sondern auf der Basis von Kompetenzen. ²Sie orientiert sich an den in der folgenden Tabelle aufgelisteten elementaren Fächergruppen des Bachelorstudiengangs Maschinenwesen der Technischen Universität München.

Fächergruppe	Credits TUM
Mathematik	
Mathematik I	7
Mathematik II	6
Mathematik III	4
Technische Mechanik	
Technische Mechanik I	6
Technische Mechanik II	6
Technische Mechanik III	7
Maschinenelemente	
Maschinenelemente I	6
Maschinenelemente II	9
Werkstoffkunde	5
Werkstoffkunde I	5
Werkstoffkunde II	<u> </u>
Thermodynamik	6

³Die Punkte werden durch Aufsummieren der Credits gemäß obiger Tabelle ermittelt. ⁴Dabei gehen maximal 60 Punkte in das Eignungsverfahren ein. ⁵Ein Credit entspricht dabei einem Punkt im Eignungsverfahren.

2. Note

¹Die für die fachliche Qualifikation gemäß 5.1.1.1 von der Prüfungskommission berücksichtigten Module werden wie folgt zur Bildung einer creditgewichteten Durchschnittsnote herangezogen:

$$\frac{\Sigma \text{ (Note x Credits)}}{\Sigma \text{ Credits}}$$

²Dabei werden maximal die in der Tabelle 5.1.1.1 genannten Credits zugrunde gelegt.
³Bei der Notenermittlung wird eine Stelle nach dem Komma berücksichtigt, alle weiteren Stellen werden ohne Rundung gestrichen.
⁴Für jede Zehntelnote, die die so errechnete Durchschnittsnote besser als 3,0 ist, erhält der Bewerber einen Punkt.
⁵Die Maximalpunktzahl beträgt 20.
⁶Negative Punkte werden nicht vergeben.
⁷Bei ausländischen Abschlüssen wird die über die bayerische Formel umgerechnete Note herangezogen.

3. Motivationsschreiben

¹Die schriftliche Begründung des Bewerbers wird auf einer Skala von 0 bis 20 Punkten bewertet. ²Der Inhalt des Motivationsschreibens wird nach folgenden Kriterien mit den in Klammern angegebenen maximal erreichbaren Punkten bewertet:

- 1. sprachlicher Ausdruck (2 Punkte),
- 2. logischer Aufbau, klare Struktur (3 Punkte),
- 3. Begründung für die Wahl des Studiengangs, Interesse (5 Punkte),
- 4. besondere Leistungsbereitschaft (10 Punkte).
- 5.1.2 Die Gesamtpunktezahl des Bewerbers für die erste Stufe des Eignungsverfahrens ergibt sich aus der Summe der Einzelbewertungen aus 5.1.1.
- 5.1.3 ¹Bewerber, die mindestens 70 Punkte erreicht haben, erhalten eine Bestätigung über das bestandene Eignungsverfahren. ²In Fällen, in denen festgestellt wurde, dass nur einzelne fachliche Voraussetzungen aus dem Erststudium nicht vorliegen, kann die Kommission zum Eignungsverfahren als Auflage fordern, Grundlagenprüfungen aus dem Bachelorstudiengang Maschinenwesen im Ausmaß von maximal 30 Credits abzulegen. ³Diese Grundlagenprüfungen müssen im ersten Studienjahr abgelegt werden. ⁴Nicht bestandene Grundlagenprüfungen dürfen nur einmal zum nächsten Prüfungstermin wiederholt werden. ⁵Der Prüfungsausschuss kann die Zulassung zu einzelnen Modulprüfungen des Masterstudiengangs vom Bestehen der Grundlagenprüfungen abhängig machen.
- 5.1.4 ¹Ungeeignete Bewerber mit einer Gesamtpunktezahl von weniger als 50 Punkten erhalten einen mit Gründen und Rechtsbehelfsbelehrung versehenen Ablehnungsbescheid, der von der Leitung der Hochschule zu unterzeichnen ist. ²Die Unterschriftsbefugnis kann delegiert werden.

5.2 Zweite Stufe der Durchführung des Eignungsverfahrens

- 5.2.1 ¹Die übrigen Bewerber werden zu einem Test (Leistungserhebung in schriftlicher und anonymisierter Form) eingeladen. ²Im Rahmen der zweiten Stufe des Eignungsverfahrens wird die im Erststudium erworbene Qualifikation und das Ergebnis des schriftlichen Tests bewertet, wobei die im Erststudium erworbene Qualifikation mindestens gleichrangig zu berücksichtigen ist.
- 5.2.2 ¹Zeitfenster für den durchzuführenden Test müssen vor Ablauf der Bewerbungsfrist festgelegt sein. ²Der Termin für den Test wird mindestens eine Woche vorher durch die Kommission bekanntgegeben. ³Der festgesetzte Termin des Tests ist vom Bewerber einzuhalten. ⁴Die Leistungserhebung findet nur einmal pro Bewerbungsphase statt. ⁵Nachtermine sind nicht möglich.
- 5.2.3 ¹Die Leistungserhebung in schriftlicher Form dauert 80 Minuten. ²Der Test soll zeigen, ob der Bewerber über den allgemeinen Wissensstand, der den Grundlagen des Bachelorstudiengangs Maschinenwesen der Technischen Universität München entspricht, verfügt, so dass ein erfolgreicher Studienabschluss zu erwarten ist. ³Der Inhalt des Tests besteht aus Aufgaben aus den Themenbereichen Mathematik, Technische Mechanik, Maschinenelemente und Werkstoffkunde, die mit jeweils maximal 20 Punkten bewertet werden. ⁴Zur Lösung der Aufgaben werden keine Kenntnisse verlangt, die über das Niveau des Bachelorabschlusses hinausgehen. ⁵Die bei der Leistungserhebung maximal erreichbare Punktzahl beträgt 80.

- 5.2.4 ¹Die Gesamtpunktezahl der zweiten Stufe ergibt sich als Summe der Punkte aus 5.2.3 sowie der Punkte aus 5.1.1.1 (fachliche Qualifikation) und 5.1.1.2 (Note). ²Bewerber, die 110 oder mehr Punkte erreicht haben, werden als geeignet eingestuft.
- 5.2.5 ¹Das Ergebnis des Eignungsverfahrens wird dem Bewerber ggf. unter Beachtung der in Stufe 1 nach Nr. 5.1.3 bereits festgelegten Auflagen schriftlich mitgeteilt. ²Der Bescheid ist von der Leitung der Hochschule zu unterzeichnen. ³Die Unterschriftsbefugnis kann delegiert werden. ⁴Ein Ablehnungsbescheid ist mit Begründung und einer Rechtsbehelfsbelehrung zu versehen.
- 5.2.6 Zulassungen im Masterstudiengang Energie- und Prozesstechnik gelten bei allen Folgebewerbungen in diesem Studiengang.

6. Niederschrift

Über den Ablauf des Eignungsverfahrens ist eine Niederschrift anzufertigen, aus der Tag, Dauer und Ort des Eignungsverfahrens, die Namen der Kommissionsmitglieder, die Namen der Bewerber und die Beurteilung der Kommissionsmitglieder sowie das Gesamtergebnis ersichtlich sein müssen.

7. Wiederholung

Bewerber, die den Nachweis der Eignung für den Masterstudiengang Produktion und Logistik nicht erbracht haben, können sich einmal erneut zum Eignungsverfahren anmelden.

Anlage 3: Studienplan der Masterstudiengänge

1. Semester	ECTS	2. Semester	ECTS
Mastermodul 1	5	Mastermodul 4	5
Mastermodul 2	5	Mastermodul 5	5
Mastermodul 3	5	Mastermodul 6	5
Semesterarbeit	11	Mastermodul 7	5
Hochschulpraktikum 1	4	Hochschulpraktikum 2	4
		Ergänzungsfach 1	3
		Ergänzungsfach 2	3
SUMME ECTS	30	SUMME ECTS	30

3. Semester	ECTS	4. Semester	ECTS
Mastermodul 8	5	Master's Thesis	27
Mastermodul 9	5	Anleitung zum	
Mastermodul 10	5	wissensch. Arbeiten	3
Mastermodul 11	5		
Mastermodul 12	5		
Ergänzungsfach 3	3		
Soft Skills 1	2		
SUMME ECTS	30	SUMME ECTS	30

Ausgefertigt aufgrund des Beschlusses des Akademischen Senats der Technischen Universität München vom 21. November 2012, des Eilentscheids des Präsidenten der Technischen Universität München vom 25. Februar 2013 sowie der Genehmigung durch den Präsidenten der Technischen Universität München vom 15. März 2013.

München, den 15. März 2013

Technische Universität München

Wolfgang A. Herrmann Präsident

Diese Satzung wurde am 15. März 2013 in der Hochschule niedergelegt; die Niederlegung wurde am 15. März 2013 durch Anschlag in der Hochschule bekannt gemacht. Tag der Bekanntmachung ist daher der 15. März 2013.